Effects of wrong adjoints for RTM in TTI media.
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SUMMARY:

In order to obtain accurate images of the subsurface, anisotropic
modeling and imaging is necessary. However, the twenty-one
parameter complete wave-equation is too computationally ex-
pensive to be of use in this case. The transverse tilted isotropic
wave-equation is then the next best feasible representation of
the physics to use for imaging. The main complexity arising
from transverse tilted isotropic imaging is to model the receiver
wavefield (back propagation of the data or data residual) for
the imaging condition. Unlike the isotropic or the full physics
wave-equations, the transverse tilted isotropic wave-equation is
not not self-adjoint. This difference means that time-reversal
will not model the correct receiver wavefield and this can lead
to incorrect subsurface images. In this work, we derive and
implement the adjoint wave-equation to demonstrate the ne-
cessity of exact adjoint modeling for anisotropic modeling and
compare our result with adjoint-free time-reversed imaging.

INTRODUCTION

Accurate representations of the physics are necessary for precise
imaging of the earth’s subsurface. However, realistic represen-
tations of the physics are currently computationally infeasible,
due to the large computational cost associated with solving elas-
tic wave equations. The acoustic isotropic approximation of the
wave equation is considerably cheaper to solve, but does not
account for anisotropic propagation effects that can be observed
in a variety of geological settings, such as thin sedimentary lay-
ers below the resolution of the predominant source wavelength.
To account for kinematic effects of anisotropic media, a variety
of acoustic anisotropic approximations of the wave equation
exist. One of the most popular anisotropic wave equations
is the tilted transverse isotropy (TTI) representation (Thom-
sen, 1986; Alkhalifah, 2000), which assumes symmetries of
the anisotropy around a tilted axis. TTI wave equations are
computationally cheaper than elastic wave equations, fairly
straight-forward to implement and kinematically more realistic
than the isotropic approximations. Modeling in TTI media is
well studied (Fletcher et al., 2009; Xu and Zhou, 2014; Zhang
et al., 2005; Zhan et al., 2013), but the literature usually only
covers forward modeling, while reverse-time migration (RTM)
(Baysal et al., 1983; Whitmore, 1983) also requires solving the
corresponding adjoint wave equation. A common approach for
imaging, is to assume that the TTI equations are self-adjoint,
since the true underlying physical system is self-adjoint, and
to use the forward modeling operator for back propagation, by

the TTI wave equation for imaging and compare it to using the
time-reversed forward modeling operator. The wave equations
in this study are implemented with Devito (Lange et al., 2017;
Louboutin et al., 2018), a finite-difference domain-specific lan-
guage (DSL) in Python, that allows symbolic implementations
of forward and adjoint wave equations, from which optimized
C code is automatically generated during runtime. Further-
more, we use the Julia Devito Inversion (JUDI) framework
(Witte et al., 2018) for parallelizing over the source locations.
In the next section, we start with the definition of the TTI
wave-equation, the derivation of its adjoint and comparisons
of impulse responses from the time-reversed and true adjoint
TTI wave equation. We then compare RTM results of a realistic
2D TTI model and highlight the importance of exact adjoint
modeling.

THEORY

Transverse-isotropic wave equations provide a kinematically
accurate acoustic representation of the physics with a reduced
number of parameters in comparison to the general elastic wave
equation (five parameters instead of 21). We refer to Thomsen
(1986), Alkhalifah (2000) and Zhang et al. (2005) for a detailed
derivation and justification of the formulation and concentrate
here on the derivation of the adjoint TTI wave-equation and the
its relevance for imaging. In a TTI medium, the governing equa-
tions with the conventional physical parametrization (squared
slowness m(x), Thomsen parameters €(x),d(x) and tilt and
azimuth 6(x), ¢ (x)) are given by (Thomsen, 1986,Zhang et al.
(2011), Duveneck and Bakker (2011)):
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where Gz, Gz, Gyy are the rotated second order differential
operators that depend on the tilt, azimuth and the conventional
(isotropic) spatial derivatives j—x, % and d%. As discussed in
Zhang et al. (2011) and Duveneck and Bakker (2011), we
consider the discrete finite-difference representations of the
three differential operators Gz, Gz, Gyy to be self-adjoint to
ensure numerical stability. For example, we can choose:
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in the general case not self-adjoint and require rigorous deriva-
tions of the correct (discrete) adjoint wave equations. In this
work, we analyze the importance of using correct adjoints of
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The rotated finite-difference operators contain the angles of the
TTI symmetry axis, which are assumed to be spatially varying



as described in equation 2. The squared slowness and Thomsen
parameters are spatially varying as well, under the assumption
that € > §. With the TTI system of equations as defined above,
we consider the standard zero-lag cross-correlation imaging
condition for reverse-time migration for the case of couple

equations:
n
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In the above expression, p,, 7, are the two components of the
adjoint (TTI) wavefields and p,# are the second order time
derivatives of the two forward wavefields. Note, that the gradi-
ent is computed as the sum of the separate correlation of the two
components, not the correlation of the sum of the components.
Furthermore, the adjoint wavefields p,,r, cannot be computed
by forward propagating the time-reversed shot records, but
require solving the actual adjoint TTI wave equations. Even
though the spatially varying finite-difference operators G are
self-adjoint by construction, the overall system itself is not
self-adjoint, since the operators are multiplied with terms that
contain the spatially varying Thomsen parameters. The correct
adjoint system of equations corresponding to the TTI forward
wave equations (equation 1) is given by:
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where g, is the adjoint source, which, for RTM, are the observed
shot records. Compared to the forward TT wave equations, the
adjoint system is fundamentally different. While the forward
system consists of two coupled PDEs that are merely two ro-
tated and weighted acoustic wave-equations, the corresponding
adjoint system consists of two fully decoupled horizontal/ver-
tical equations. To illustrate the differences of the true adjoint
wave equations and the time-reversed equations, we compare
the impulse response of the subsurface for both cases by back-
propagating a time-reversed Ricker wavelet, injected at a single
receiver location.

Figure 1 shows that the impulse responses of the time-reversed
and adjoint TTI systems are drastically different. As expected,
the amplitudes along the wave-fronts differ, since the adjoint
wavefield consists of a purely vertical and a purely horizontal
components, while the time-reversed wavefields are a combina-
tion of both. The difference plots in the bottom row of Figure 1
show that the amplitudes of wave fronts differ throughout the
full domain and will therefore lead to different results, once cor-
related for an RTM image. Furthermore, we plot two traces of
the wavefields that were extracted at the locations indicated by
the red lines (Figure 2). While the amplitude difference in the
snapshots may appear only minor, the trace plots reveal that the
amplitude differences are in fact substantial. The vertical trace
shows that the amplitude differs up to a factor of five and that
the amount of energy in the two wavefield components seems
to be flipped (i.e. p, contains more energy than r,). The most
problematic differences can be observed in the horizontal trace
comparison, where wee see that the energy of the wavefields
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Figure 1: Impulse response of the time-reversed and adjoint
wave-equation in a TTI medium (BP synthetic model 2007).
The top row shows the wavefields of the time-reversed forward
wave equations, while the wavefields of the true adjoint equa-
tions are shown in the center row. The bottom row shows the
component-wise difference between the time-reversed and ad-
joint wavefields. All snapshots and differences are displayed at
the same scale.

is flipped between the left and right side of the wavefield (with
respect to the source), which means the subsurface illumination
of the time-reversed wavefield in incorrect.

Figure 2: Vertical and horizontal traces, extracted from the
two-dimensional adjoint and time-reversed wavefields.

REVERSE TIME MIGRATION

We finally show a Reverse-Time-Migration (RTM) example
on the 2007 BP TTI dataset. We compare in this example
the images obtained with the true adjoint wavefields (4) and
the time-reversed “adjoint” that propagates backward in time
Equation 1 for the “adjoint” modeling. We use a 20 Hz Ricker



wavelet and back propagate the muted data as in Sun et al.
(2016) without any extra processing or filtering.

The two images do look similar, both contain the salt body and
the anticline and complex events on the left. However there are
a number of substantial differences between these two images
that require a closer look. We show on Figure 4 three parts of
the final image overlaid with the background velocity model.
The three selected areas are highlighted in Figure 3 and are
within the part of the model with a non zero tilt angle.

The first difference to notice on these zoomed images, is that
the salt boundaries are imaged at incorrect positions with the
adjoint-free time-reversed method. The bottom flat layer is too
deep while the vertical channel is shifted to the left. On the
second zoomed in part, we observe that the image obtained with
the true adjoint is more focused and highlights more reflectors
aligned with the velocity variations while the time-reversed one
is missing a lot of reflectors on the left of the anticline. We
also see that that the reflectors matching the high velocity at the
bottom are blurry and too deep with the time-reversed method.
Finally, on the last image, both methods focus at the correct
positions, however, the time-reversed image is unfocused and
has missing or blurred reflectors. While these differences may
look minor, the shifts in space are in the order of hundred of
meters and are non negligible errors for interpretation.

CONCLUSIONS

In this work, we detailed the main differences between adjoint-
free time-reversal imaging and imaging with proper adjoints
in a transverse tilted isotropic medium. We demonstrated on a
realistic dataset that time-reversal does not image the subsurface
correctly and that rigorous adjoint modeling is necessary for
anisotropic imaging. Even though the time-reversed image
perhaps seems good by itself, we showed that the subsurface
events actually do not align with the velocity once overlaid.
Such a displacement with good focusing could lead to incorrect
interpretation. On the other hand, we demonstrated improved
imaging accuracy with adjoint modeling that places subsurface
events at the correct locations and creates a more focused image
in several areas such as the anticline region.

Finally, adjoint modeling provides one extra tool that would
not be possible with time-reverse imaging. While reverse-time
migration does provide good images, complex model such as
the one we presented here, requires a least-squares solution
to image areas with poor illumination or steep events such
as the flanks of the salt body. These least-square methods
require an exact adjoint to stay stable and converge. With the
correct adjoint implemented, the next step is to incorporate our
simulator in a least-square imaging workflow to improve the
final image.
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Figure 4: Selected areas of the RTM image overlaid with the
background velocity model. The top row is the image with
the true adjoint wavefield and the bottom row with the time-
reversed as an adjoint.

with the support of the member organizations of the SINBAD
Consortium.

REFERENCES



REFERENCES

Alkhalifah, T., 2000, An acoustic wave equation for anisotropic
media: Geophysics, 65, 1239-1250.

Baysal, E., D. D. Kosloff, , and J. W. C. Sherwood, 1983,
Reverse time migration: Geophysics, 48, 1514-1524.

Duveneck, E., and P. M. Bakker, 2011, Stable p-wave modeling
for reverse-time migration in tilted ti media: GEOPHYSICS,
76, S65-S75.

Fletcher, R. P., X. Du, and P. J. Fowler, 2009, Reverse time
migration in tilted transversely isotropic (tti) media: GEO-
PHYSICS, 74, WCA179-WCA187.

Lange, M., N. Kukreja, F. Luporini, M. Louboutin, C. Yount, J.
Hiickelheim, and G. J. Gorman, 2017, Optimised finite dif-
ference computation from symbolic equations: Proceedings
of the 15th Python in Science Conference, 89 — 96.

Louboutin, M., P. A. Witte, M. Lange, N. Kukreja, F. Luporini,
G. Gorman, and F. J. Herrmann, 2018, Full-waveform in-
version - part 2: adjoint modeling: The Leading Edge, 37,
69-72. ((The Leading Edge)).

Sun, J., S. Fomel, and L. Ying, 2016, Low-rank one-step wave
extrapolation for reverse time migration: GEOPHYSICS,
81, S39-S54.

Thomsen, L., 1986, Weak elastic anisotropy: Geophysics, 51,
1964-1966.

Whitmore, N. D., 1983, Iterative depth migration by backward
time propagation: 1983 SEG Annual Meeting, Expanded
Abstracts.

Witte, P. A., M. Louboutin, M. Lange, N. Kukreja, F. Luporini,
G. Gorman, and F. J. Herrmann, 2018, A large-scale frame-
work for symbolic implementations of seismic inversion
algorithms in julia.

Xu, S., and H. Zhou, 2014, Accurate simulations of pure quasi-
P-waves in complex anisotropic media: Geophysics, 79,
341-348.

Zhan, G., R. C. Pestana, and P. L. Stoffa, 2013, An efficient
hybrid pdeudospectral/finite-difference scheme for solving
the TTI pure P-wave equation: Journal of Geophyics and
Engineering, 10.

Zhang, L., J. W. Rector III, and H. G. Micheal, 2005, Finite-
difference modelling of wave propagation in acoustic tilted
TI media: Geophysical Prospecting, 53, 843—-852.

Zhang, Y., H. Zhang, and G. Zhang, 2011, A stable TTI reverse
time migration and its implementation: Geophysics, 76,
WA3-WAL1.



