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SUMMARY

Modern-day oil and gas exploration, especially in areas of
complex geology such as fault belts and sub-salt areas, is an
increasingly expensive and risky endeavour. Typically long-
offset and dense sampling seismic data are required for sub-
sequent shot based processing procedures, e.g. wave-equation
based inversion (WEI) and surface-related multiple elimination
(SRME). However, these strict requirements result in an expo-
nential growth in data volume size and prohibitive demands on
computational resources, given the multidimensional nature of
the data volumes. Moreover the physical constraints and cost
limitations impose restrictions on acquiring fully sampled data.
In this work, we propose to invert our large-scale data from a
set of subsampled measurements, resulting in an estimate of the
true volume in a compressed low-rank tensor format. Rather
than expanding the data to its fully-sampled form for later
downstream processes, we demonstrate how to use this com-
pressed data directly via on-the-fly common shot or receiver
gathers extraction. The combination of massive compression
and fast on demand data reconstruction of 3D shot or receiver
gathers leads to a substantial reduction in memory costs but
with minimal effects on results in the subsequent processing
procedures. We demonstrate the effective implementation of
our proposed framework on full-waveform inversion on a 3D
seismic synthetic data set generated from a Overthrust model.

INTRODUCTION

In recent years, industrial seismic exploration has moved to-
wards acquiring data in challenging-to-image regions. In order
to satisfy Nyquist sampling criteria and to provide more useful
information in the deep or steeply dipping geologies, compa-
nies typically acquire finely-sampled and long-offset seismic
data in order to avoid aliasing and inaccuracy in subsequent pro-
cessing steps (Abma et al., 2007). Owing to the large scale and
dimensionality of 3D seismic experiments, acquiring fully sam-
pled data is an exceedingly time-consuming and cost-intensive
process. For 3D seismic surveys, the high dimensionality (two
source coordinates, two receiver coordinates and time) leads
to exponentially increasing data processing costs as the size of
the area of interest grows and fully sampled volumes can easily
reach terabytes or even petabytes in size.

Terrain limitations or cost restrictions often limit fully sampling
data in realistic scenarios. To mitigate the issue of missing
traces or coarsely sampled data, so-called transformation-based
methods typically try to transform the data into different do-
mains, such as the Radon (Kabir and Verschuur, 1995; Wang
et al., 2010), Fourier (Sacchi et al., 2009; Curry, 2010), Wavelet
(Villasenor et al., 1996), and Curvelet (Hennenfent and Her-
rmann, 2006; Herrmann and Hennenfent, 2008) transforms, and
exploit sparsity or correlations among coefficients in order to

recover the fully sampled volumes. The authors in (Hennenfent
and Herrmann, 2006; Herrmann and Hennenfent, 2008) suc-
cessfully reconstruct incomplete seismic data in the Curvelet
domain based upon the ideas from compressive sensing using
`1-based reconstruction. Although these methods are sufficient
for storing and retrieving data due to the storage of small sub-
sets of total coefficients, transform-based methods are unable to
easily provide query-based access to elements of interest from
the data volume such as common shot gathers. As such, if one
recovers a subsampled volume with one of these techniques,
invariably one must reform the entire data set before working
with it in processes such as full-waveform inversion.

Alternate to transform-based methods are matrix completion
(Oropeza and Sacchi, 2011; Kumar et al., 2015) and tensor
completion (Kreimer and Sacchi, 2012; Trickett et al., 2013;
Da Silva and Herrmann, 2015) techniques, which exploit the
natural low-rank behavior of seismic data under various permu-
tations. Critical in applying these methods to realistically-sized
data is the absence of computing singular value decompositions
(SVDs) on data volumes. Methods proposed by (Kreimer and
Sacchi, 2012), for instance, which employ a projection on to
convex sets technique to complete seismic data in the Tucker
tensor format, suffer from the high computational complexity
of such operations. As a result, practitioners often have to
resort to working with small subsets or windows of the data,
which may degrade the recovered signal (Kumar et al., 2015).
An more computationally feasible approach is to formulate al-
gorithms directly in terms of the low-rank components of the
signal, which eliminates the necessity of computing expensive
SVDs or resorting to aggressive data windowing. The authors in
Da Silva and Herrmann (2015) develop an optimization frame-
work for interpolating Hierarchical Tucker (HT) tensors using
the smooth manifold structure of the format, which we explore
further.

In this work, we outline a workflow for interpolating seismic
data from missing traces directly in compressed HT form. Once
we have an estimate for the true data in terms of the HT param-
eters, we can reconstruct shot or receiver gathers on a per-query
basis. Using this technique, we do not have to form the full
data volume when performing full-waveform inversion and in-
stead allow the stochastic algorithm to extract shot gathers as
it requires them throughout the inversion process. This shot
extraction procedure only requires efficient matrix-matrix and
tensor-matrix products of small parameters matrices and adds
little overhead compared to the cost of solving the partial dif-
ferential equations (PDEs). In doing so, we greatly reduce the
memory costs involved in storing and processing these data
volumes in an inversion context.



HIERARCHICAL TUCKER REPRESENTATION

Hierarchical Tucker (HT) tensors are a novel structured ten-
sor format introduced in (Hackbusch and Kühn, 2009). This
format is extremely storage-efficient, with the number of param-
eters growing linearly with the number of dimensions rather
than exponentially with traditional point-wise array storage,
which makes it computationally tractable for parametrizing
high-dimensional problems. To help describe the HT format,
we give some preliminary definitions.

Definition 1: The matricization X(l) of a tensor X ∈
Cn1×n2×···×nd reshapes the dimensions specified by
l = {l1, l2, . . . , li} ⊂ {1,2, . . . ,d} into the row indices
and lc := {1,2, . . . ,d}\ l into the column indices of the matrix
X(l).

For example, given a 4−dimensional tensor X ∈ Cn1×n2×n3×n4 ,
X (1,2) is an n1n2×n3n4 matrix with the first two dimensions
along the rows and the last two dimensions along the columns.

Definition 2: The multilinear product of a three-dimensional
tensor X∈Cn1×n2×n3 with the matrix Ai ∈Cmi×ni for i= 1,2,3,
denoted A1×1 A2×2 A3×3 X, is defined in vectorized form as
vec(A1×1 A2×2 A3×3 X) :=(A3⊗A2⊗A1)vec(X). Intuitively,
this is simply multiplying the tensor X by Ai in the ith dimension
for each i.

Definition 3: A dimension tree T for a d−dimensional tensor
is a binary tree where each node is associated to a subset of
{1,2, . . . ,d}, the root node troot = {1,2, . . . ,d}, and each non-
leaf node t is the disjoint union of its left and right children,
t = tl ∪ tr, tl ∩ tr = /0. We can think of a dimension tree as
defining a recursive partitioning of groups of dimensions, where
the dimensions present in the left child node are “separated”
from the dimensions in the right child node.
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Figure 1: Hierarchical Tucker format for a 4D tensor X ∈
Cn1×n2×n3×n4 .

Although slightly technical to define, the Hierarchical Tucker
format aims to “separate” groups of dimensions from each
other, where “separate” is understood in the sense of an SVD-
type decomposition, depicted in Figure 1. For a 4D tensor X,
such as a 3D frequency slice, we first reshape the given tensor
as a matrix with the first two dimensions along the rows and
other two along the columns, namely X(1,2). Then we separate
the dimensions (1,2) from (3,4) by performing a SVD-like

factorization for this matrix, and we can obtain two intermediate
matrices U(1,2) and U(3,4) at this stage. By further reshaping
U(1,2) and U(3,4) into 3D cubes, we finally isolate singletons,
i.e. dimension 1,2,3,4, from grouped dimensions (1,2) and
(3,4). The full tensor can be formed by reversing this process,
i.e., multiplying B(1,2) by U1 in the first dimension and U2 in
the second dimension, to form U(1,2), and so on for the other
matrices. See (Da Silva and Herrmann, 2015) for more details.

By virtue of the recursive construction in Figure 1, it is not
necessary to store the intermediate matrices Usrc x, rec x or
Usrc y, rec y. It is sufficient to reconstruct a d dimensional
full tensor by only storing d small matrices Ut and d − 2
small 3− dimensional transfer tensors Bt . Hence, the storage
requirement is bounded above by dNk + (d − 2)k3 + k2,
where N = max{n1,n2, . . . ,nd} and k is the maximum rank
(Hackbusch and Kühn, 2009). Compared to Nd parameters
needed to store the full data, the HT format greatly reduces the
number of parameters needed to be stored and manipulated. For
3D seismic data, the internal ranks of tensor format increases as
temporal-frequency grows, so that lower frequencies compress
more easily than higher frequencies, as shown in Table 1.
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Figure 2: Non-canonical dimension tree for the HT format
applied to seismic data

It is critical to note that the organization of the tensor has a
major impact on its low-rank behaviour. In the seismic context,
we permute our data from the typical or canonical organization
(source x, source y, receiver x, receiver y) into a non-canonical
organization (source x, receive x, source y, receiver y), which
results in faster decaying singular values for associated matri-
cizations (Da Silva and Herrmann, 2015; Aravkin et al., 2014).
The dimension tree associated to this organization is shown
in Figure 2. From the perspective of low-rank reconstruction,
considering randomly missing sources or receivers in the non-
canonical ordering leads to growth of the singular values in
the corresponding matricizations of the tensor, leading to more
favourable recovery conditions as explored in (Kumar et al.,
2015). The resulting HT parameters are indexed as

Ut ∈ Cnt×kt t = src x, src y, rec x, rec y

Bt ∈ Cktl×ktr×kt t = (src x, rec x), (src y, rec y),

(src x, rec x, src y, rec y) ,

(1)

where nt ,kt corresponds to the dimensions and ranks indexed
by the label t, respectively.



Frequency (Hz) Parameter size Compression Ratio SNR

3 71MB 98.8% 42.8dB
6 421MB 92.9% 43.0dB

Table 1: Compression ratio comparison between non-canonical and canonical organizations with hierarchical Tucker truncation
method. Synthetic data is generated on the 3D Overthrust model with 502 sources and 3962 receivers, resulting in each frequency
slice requiring 5.8GB of storage.

Given fully sampled seismic data in the non-canonical orga-
nization, one can truncate the full tensor to HT form via the
algorithm in (Tobler, 2012), given a prescribed error tolerance
and maximum inner rank. In the more realistic case when we
have subsampled data, we can use the algorithm described in
(Da Silva and Herrmann, 2015) to recover the full data volume
by solving

min
x
‖A φ(x)−b‖2

2. (2)

Here x is the vectorized set of HT parameters (Ut ,Bt) from (1),
φ maps x to the fully-expanded tensor φ(x), A is the subsam-
pling operator, and b is our subsampled data. This algorithm
can interpolate each 4D monochromatic slice quickly and effi-
ciently as it does not compute SVDs on large matrices.

ON-THE-FLY EXTRACTION OF SHOT/RECEIVER
GATHERS

Irrespective of our sampling regime, once we have a representa-
tion of our data volume in the HT format, we can greatly reduce
the computational costs of working with our data. In order to
make use of the data directly in its compressed form, we present
a method for extracting a shot (or receiver) gather at a given
position (ix, iy) directly from the compressed parameters. We
use Matlab colon notation A(i, :) to denote the extraction of the
ith row of the matrix A, and similarly for column extraction.
The common shot gather can be reconstructed by computing

Usrcx,recx =Usrcx(ix, :)×1 Urecx×2 Bsrcx,recx

Usrcy,recy =Usrcy(iy, :)×1 Urecy×2 Bsrcy,recy

Dix,iy =Usrcx,recx×1 Usrcy,recy×2 Bsrcx,recx,srcy,recy

(3)

Most importantly, all the computations in Equation (3) can be
efficiently implemented with Kronecker products or matrix-
vector products, outlined in Algorithm 1. Note that the interme-
diate quantities can be constructed through efficient multilinear
products and are much smaller than the ambient dimensionality.

EXPERIMENTS & RESULTS

To demonstrate that our method significantly reduces mem-
ory costs of working with the data volume, we consider full-
waveform inversion on the SEG/EAGE 3D Overthrust velocity
model. This 20km×20km×5km velocity model, discretized
on a 50m grid in each direction, contains structurally complex
areas such as fault belts and channels. We modify this model
by adding a 500m water layer on top.

Algorithm 1 Extracting a common shot gather from com-
pressed hierarchical Tucker parameters
Input: Source position ix and iy, and dimension tree
1. Extract the vector usrcx from the matrix Usrcx(ix, :)
2. Multiply Bsrcx,recx along the ksrcx dimension with the vec-

tor usrcx (in the sense of Definition 2)
3. Multiply the matrix obtained from step 2 along the krecx di-

mension (second dimension) with Urecx, resulting in a ma-
trix Usrcx,recx of size nrecx× k(srcx,recx)
4. Repeat steps 1,2,3 along the y coordinate to obtain the ma-

trix Usrcy,recy of size nrecy× k(srcy,recy)

5. The product Usrcx,recxBsrcx,recxUT
srcy,recy results in the fi-

nal shot gather

We generate our data from 4 frequencies between 3Hz and 6Hz
with spacings of 1Hz using a 50× 50 source grid with 400m
spacing and a 396× 396 receiver grid with 50m spacing on
the ocean bottom. The size of each frequency slice is roughly
5.8GB. From the full data, we randomly remove 80% of re-
ceivers from each frequency slice. We then are able to obtain
our compressed data volume for each monochromatic slice by
interpolating in the HT format. Figure 3 demonstrates the suc-
cessful interpolation of the data volume from a high level of
missing data, resulting in shot-gathers that are simple to extract
with (3).
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Figure 3: Comparison of a common shot gather from the Over-
thrust data at 6Hz between originally full data and direct ex-
traction from the compressed data with Algorithm (1) after
interpolation



The modeling code we employ is WAVEFORM, which is a
Helmholtz inversion framework written primarily in Matlab
(Da Silva and Herrmann, 2016). Considering the large number
of sources in these experiments, we use a stochastic optimiza-
tion algorithm that works on randomly subsampled subsets of
shots rather than using all the shots at each iteration, which
reduces the number of PDEs to be solved at a given iteration.
For each subset of shots, we partially minimize the resulting
least-squares objective function with the LBFGS algorithm
with bound constraints, i.e. minimum and maximum allowed
velocities (Schmidt et al., 2009). We invert a single frequency
at one time using 50 nodes with 8 Matlab workers running for
each, where each node has 20 CPU cores and 256GB of RAM.
We run the 3D FWI experiments for both the full data and com-
pressed HT data recovered from interpolation, fixing the total
number of PDEs solved. In this case, we design an interface to
our stochastic inversion algorithm that allows the algorithm to
automatically determine the shot gather indices required at a
given iteration, which are subsequently generated by (3). Fig-
ure (4) and (5) show inversion results for both full data and
compressed data. Despite working with heavily subsampled
initial data, the interpolation algorithm is able to accurately
estimate the entire data volume and the compressed parameters
are used to successfully invert the velocity model at a greatly
reduced memory cost. In this case, the data volume sizes are
reduced by over 90%, with little visual difference in the final
inversion results.
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Figure 4: FWI results for z = 1000m depth slice. (a) true model,
(b) initial model, (c) inverted model with full data , (d) inverted
model with compressed data. The number of PDE solves in
both cases are the same.

CONCLUSIONS & DISCUSSION

In this paper, we propose an approach to represent our large-
scale 5D data set in terms of its low-rank tensor parametrization.
This approach is suitable for when the data is fully sampled
or missing randomly distributed sources or receivers. Rather
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Figure 5: FWI results for x = 12500m lateral slice. (a) true
model, (b) initial model, (c) inverted model with full data, (d)
inverted model with compressed data. The number of PDE
solves in both cases are the same.

than explicitly forming the full data volume, we utilize the
data directly in its compressed form, giving query-based access
to the full volume. This approach extracts any common shot
or receiver gathers on-the-fly, making its code easily embed-
ded into other processing frameworks such as 3D FWI. The
proposed approach is computationally and memory efficient
without degrading subsequent results.

The techniques outlined in this work have the potential to sub-
stantially reduce data communication costs in distributed wave-
equation based inversion. In a parallel environment, we can
cheaply store a compressed form of the full data volume at a
given frequency on every node. This technique also lends itself
to generating simultaneous shots on-the-fly in a similar manner
to Algorithm (1), without the associated data communication
costs one would incur from distributing the full data volume
over the source dimension. The very high compression ratios
(greater than 90% in this example) are particularly enticing for
low frequency full waveform inversion.

ACKNOWLEDGEMENTS

This research was carried out as part of the SINBAD II project
with the support of the member organizations of the SINBAD
Consortium. The authors wish to acknowledge the SENAI
CIMATEC Supercomputing Center for Industrial Innovation,
with support from BG Brasil, Shell, and the Brazilian Authority
for Oil, Gas and Biofuels (ANP), for the provision and operation
of computational facilities and the commitment to invest in
Research & Development.



REFERENCES

Abma, R., C. Kelley, and J. Kaldy, 2007, Sources and treat-
ments of migration-introduced artifacts and noise, in SEG
Technical Program Expanded Abstracts 2007: Society of
Exploration Geophysicists, 2349–2353.

Aravkin, A., R. Kumar, H. Mansour, B. Recht, and F. J. Her-
rmann, 2014, Fast methods for denoising matrix completion
formulations, with applications to robust seismic data in-
terpolation: SIAM Journal on Scientific Computing, 36,
S237–S266.

Curry, W., 2010, Interpolation with fourier-radial adaptive
thresholding: Geophysics, 75, WB95–WB102.

Da Silva, C., and F. Herrmann, 2016, A unified 2d/3d software
environment for large-scale time-harmonic full-waveform
inversion, in SEG Technical Program Expanded Abstracts
2016: Society of Exploration Geophysicists, 1169–1173.

Da Silva, C., and F. J. Herrmann, 2015, Optimization on the
hierarchical tucker manifold–applications to tensor comple-
tion: Linear Algebra and its Applications, 481, 131–173.

Hackbusch, W., and S. Kühn, 2009, A new scheme for the
tensor representation: Journal of Fourier analysis and appli-
cations, 15, 706–722.

Hennenfent, G., and F. J. Herrmann, 2006, Application of sta-
ble signal recovery to seismic data interpolation, in SEG
Technical Program Expanded Abstracts 2006: Society of
Exploration Geophysicists, 2797–2801.

Herrmann, F. J., and G. Hennenfent, 2008, Non-parametric
seismic data recovery with curvelet frames: Geophysical
Journal International, 173, 233–248.

Kabir, M. N., and D. Verschuur, 1995, Restoration of missing
offsets by parabolic radon transform: Geophysical Prospect-
ing, 43, 347–368.

Kreimer, N., and M. D. Sacchi, 2012, A tensor higher-order
singular value decomposition for prestack seismic data noise
reduction and interpolation: Geophysics, 77, V113–V122.

Kumar, R., C. Da Silva, O. Akalin, A. Y. Aravkin, H. Man-
sour, B. Recht, and F. J. Herrmann, 2015, Efficient matrix
completion for seismic data reconstruction: Geophysics, 80,
V97–V114.

Oropeza, V., and M. Sacchi, 2011, Simultaneous seismic data
denoising and reconstruction via multichannel singular spec-
trum analysis: Geophysics, 76, V25–V32.

Sacchi, M., S. Kaplan, and M. Naghizadeh, 2009, Fx gabor
seismic data reconstruction: Presented at the 71st EAGE
Conference and Exhibition incorporating SPE EUROPEC
2009.

Schmidt, M. W., E. Van Den Berg, M. P. Friedlander, and
K. P. Murphy, 2009, Optimizing costly functions with sim-
ple constraints: A limited-memory projected quasi-newton
algorithm.: AISTATS, 456–463.

Tobler, C., 2012, Low-rank tensor methods for linear systems
and eigenvalue problems: PhD thesis, ETH Zürich.

Trickett, S., L. Burroughs, and A. Milton, 2013, Interpolation
using hankel tensor completion, in SEG Technical Program
Expanded Abstracts 2013: Society of Exploration Geophysi-
cists, 3634–3638.

Villasenor, J. D., R. Ergas, and P. Donoho, 1996, Seismic data
compression using high-dimensional wavelet transforms:

Data Compression Conference, 1996. DCC’96. Proceedings,
IEEE, 396–405.

Wang, J., M. Ng, and M. Perz, 2010, Seismic data interpolation
by greedy local radon transform: Geophysics, 75, WB225–
WB234.


