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SUMMARY:

Based on the latest developments of research in inversion tech-
nology with optimization, researchers have made significant
progress in the implementation of least-squares reverse-time
migration (LS-RTM) of primaries. In Marine data however,
these applications rely on the success of a pre-imaging sepa-
ration of primaries and multiples, which can be modeled as a
multi-dimensional convolution between the vertical derivative
of the surface-free Green’s function and the down-going re-
ceiver wavefield. Instead of imaging the primaries and multiples
separately, we implement the LS-RTM of the total down-going
wavefield by combining areal source injection and linearized
Born modelling, where strong surface related multiples are gen-
erated from a strong density variation at the ocean bottom. The
advantage including surface related multiples in LS-RTM is
the extra illumination we obtain from these multiples without
incurring additional computational costs related to carrying out
multi-dimensional convolutions part of conventional multiple
prediction procedures. Even though we are able to avert these
computational costs, our approach shares the large costs of LS-
RTM. We reduce these costs by combining randomized source
subsampling with our sparsity-promoting imaging technology,
which produces artifact-free, high-resolution images, with the
surface-related multiples migrated properly.

INTRODUCTION

By fitting the modeled primaries to observed primaries in the
least-squares sense, least-squares reverse-time migration (LS-
RTM, (?)) can remove the imprint of the source wavelet, limited
aperture, and other amplitude effects on migrated images. Since
minimizing the ¢;-norm on the data residual attempts to invert
a highly overdetermined but inconsistent system, resulting im-
ages often suffer from overfitting. One possible way to remove
these artifacts is to impose some sort of regularization on to the
original LS-RTM formulation. Aside from imaging artifacts
associated with possible overfitting, LS-RTM is also compu-
tationally prohibitively expensive withstanding its widespread
adaptation. Motivated by ideas from Compressive Sensing
(Donoho, 2006), ? proposed to solve the expensive overdeter-
mined and inconsistent system of LS-RTM by solving a series
of much smaller and therefore much cheaper randomized sub-
problems. Thanks to this randomized subsampling, we are able
to carry out sparsity-promoting LS-RTM at the cost of roughly
one-to-three passes through the data. However, the resulting
images remained somewhat noisy, a well-known by product
of stochastic optimization methods where different subsets of
shots are used during each iteration. By replacing the ¢; norm
objective by an elastic net, as proposed by Lorenz et al. (2014)
in the field of online Compressive Sensing, these remaining
noisy artifacts can be removed as shown by Herrmann et al.
(2015). Following this work, Yang et al. (2016) implemented
this linearized Bregman method in the time domain including

on-the-fly source estimation with variable projection.

So far, this work mostly involved imaging of primaries only. For
(shallow) Marine data, this assumption requires separation of
primaries from the total down-going wavefield, which includes
surface-related multiples. One way to separate the primaries is
to consider the surface-related multiples elimination (SRME)
relation (Verschuur et al., 1992), which models multiples as a
multi-dimensional convolution between the vertical derivative
of the surface-free Green’s function and the total down-going
wavefield. While this relation has resulted in technologies such
as SRME and Estimation of Primaries by Sparse Inversion
((EPSI), ?) that mitigate the adverse effects of surface-related
multiples successfully, it is computationally very expensive
because it involves multi-dimensional convolutions that corre-
spond to dense matrix-matrix multiplies. Also, SRME requires
the sources to be co-located with the receivers, which is can be
expensive as well. Besides the computational cost, SRME strug-
gles to estimate the source wavelet and therefore the shape of
the recovered primaries may get distorted, especially in shallow
water acquisitions. EPSI on the other hand, maps the multiples
to primaries, which offers the potential to use these multiples
the help with illumination of the subsurface. Lu et al. (2015)
and also Tu and Herrmann (2015) used the fact that the bounce
points of surface-related multiples can be considered as sec-
ondary sources to improve migrated images. Lu et al. (2015)
did this by replacing RTM’s cross-correlation based imaging
condition by a deconvolution. While the results of this later
approach have been spectacular (?), deconvolution imaging con-
ditions can lead to unwanted crosstalk caused by interference
between different orders of multiples.

By integrating the SRME relationship into sparsity-promoting
LS-RTM, Tu and Herrmann (2015) was able to properly model
surface-related multiples resulting in an inversion procedure
where surface-related multiples are mapped to imaged reflectors.
His main contribution was that integrating the SRME relation
into LS-RTM simply corresponds to adding the down-going
wavefield as an areal source. As such Tu and Herrmann (2015)
arrived at a result where the multi-dimensional convolutions
of EPSI are carried out by the wave-equation solver while
this formulation also no longer requires co-location of sources
and receivers during acquisition. While this work (Tu and
Herrmann, 2015) has resulted in high-quality multiple-free
images, it relied on an unnatural strong perturbation in the
velocity to generate realistic surface-related multiples in the
water column. We remove this problem by including density
variations at the ocean bottom into our time-doman formulation
(Yang et al., 2016). Because our time-stepping formulation
is based on Devito (?) — a just in time compiler for stencil-
based finite-difference codes — we envision that the proposed
approach can readily be extended to 3D seismic.

Our abstract is organized as follows. First, we describe multi-
ples prediction with the SRME and formulate the areal source
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injection into our linearized Born modelling operator mapping
velocity and density perturbations to linearized data. Next,
we derive an optimization scheme for LS-RTM using a mixed
{1-£»-norm objective function with areal source included. We
solve this problem with linearized Bregman. The experiments
are set up with the synthetic SIGSBEE2A model (Paffenholz
et al., 2002), where the inversion results of total down-going
wavefield with and without areal source injection are compared.

THEORY

SRME and areal source
The SRME relation (Verschuur et al., 1992) forms the founda-
tion of most multiples separation methods since it relates the
vertical derivative of the surface-free Green’s function and the
downgoing wavefield to the total upgoing wavefield—i.e. we
have

P =Y (2i+ % %), e))
where the subscript i € Q = [1...ny] with ny the total number
of discretized frequencies. The matrix%?; stands for the total
up-going wavefield at the surface with n; common-shot gathers
in its columns and n, common-receiver gathers in its rows.
Note that this data matrix £?; does not include direct waves.
The matrix¥; denotes the surface-free dipole Green’s function
organized in a similar fashion. The matrix 2; represents the
down-going point source wavefield, %; is the reflectivity at
surface, and normally is — 1. The whole term %; %?; acts as an
areal source wavefield, which when multiplied by %; produces
the total upgoing wavefield including surface-related multiples.

Tu and Herrmann (2015) incorporated the above SRME relation
into an expression for linearized modelling

P~ VZimy,om; 7|(2; — F;)
= V.Z[my,0m; 2, — & 2)
= Vﬁi [mo; ,@,‘ — ﬂi}ém.

In this expression, V.%; represents the vertical deriavtive of
linearized Born modelling, which is linear in the model per-
turbation 6m and the impulsive source array .#. When the
background model my is kinetically correct, V.%; is a good
approximation of the Green’s function ¥;. By using funda-
mental properties of Green’s function the third expression in
Equation (2) replaces the expensive convolutions in the first
expression by including the downgoing wavefield as an areal
source.

In time domain, the relationship 2 can be formulated directly as
P~ VF[my;Q — P|ém, 3)

where P, Q, VF denote the corresponding operators in the time
domain.

To generate realistic surface-related multiples in the water col-
umn, we introduce density variationsp at the ocean bottom.
Equation 3 now becomes

6
P~ VFppmg,py;Q—P) [51:;:|

~ VFm[mg, py:Q — P](Sm + Sm’).

“

In this expression, VFy p[mg, p,;Q — P] corresponds to lin-
earized Born modelling with respect to perturbations in the ve-
locity and density, respectively. The operator VFm[mg, p; Q —
P] corresponds to linearized Born modelling with respect to
velocity changes only. When we linearize the wave equation
with respect to a constant density, Born modelling for density
variations equals Born modelling for velocity variations, a prop-
erty we used in Equation 4, where m’ is the density induced
“velocity” perturbation at the Ocean bottom. By including this
additional term, we are able to model realistic surface-related
multiples in the water column without relying on unrealistic and
numerical problems inducing velocity perturbations. Note, that
we assume the density to be constant throughout the remainder
of the model so the migrated amplitudes should be interpreted
as impedance perturbations in cased where there are strong
variations of the density in the subsurface.

Sparsity-promoting LS-RTM with areal source injection

Tu (2015) demonstrated that sparsity-promoting LSRTM leads
to artifact-free high-resolution images. When using the lin-
earized Bregman method with source subsampling, we obtain
these images by solving

. 1, 5
min A|Jx||1 + 5 [Ix[I2

subject to Y "||VF(mg,pp,Q; —P;)CTx—Pj|, < o,
j

(5)
where x represents the curvelet coefficient vectors for the ve-
locity perturbation Sm + 8m'. || - ||; and || - ||, stand for ¢; and

£, norms, respectively. The sum runs over all shots, ¢ is the
two-norm of the noise. For A large enough, the solutions of
this problem corresponds to the solution of problems with a
£1-norm objective. We refer to Herrmann et al. (2015) foer a
discussion on the role of the thresholding parameter A.

We summarize pseudo code to solve problem 5 in Algorithm 1.

Algorithm 1 Linearized Bregman for LS-RTM
1. Initialize xg = 0, zg = 0, ¢, A, batchsize n}, < ny
2.for k=0,1,---
3. Randomly choose shot subsets I € [1---n,], |I| = n
4. Ay ={VF;(mg,p,Q; —P;)C"} e
5. by ={Pj}jer
6
7

Ziy ] =Zp — [kA]ZPO'(Aka — bk)
X1 = Sa (2t 1)
8. end
note: Sy (z1) = sign(zx1 1) max{0, |z 1| — 1}
Po (Akxi —by) = max{0, 1 — recp b - (Agxy —by)
t = || Axi — b2 /AT (Agxi — by ||

In Algorithm 1, P4 projects the residual onto a noise ¢ related
{>-norm ball. In our LS-RTM case, the threshold A should
chosen according to the maximum of z; to let elements of z;
enter to solution x;.


http://www.delphi.tudelft.nl/SMAART/sigsbee2a.htm
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NUMERICAL EXPERIMENTS

To test the performance of this method, we conduct the exper-
iments based on a shallow water model modified from SIGS-
BEE2A model shown in Figure 1, which is discretized with grid
size of 5m, totally 4.15km deep and 4.48km wide. The water
layer is roughly 100m deep. The background velocity my is
smoothed from the true model and is kinematically correct. The
density model is converted from velocity background model by
the Gardner relation in the sedimental layers, and the value for
water layer is constant 1. So in the true density model there is
only sharp perturbation near the ocean bottom. We compare the
images inverted with all the reflection data with and without our
method. We use a Ricker wavelet centered at 15Hz as source
wavelet and record the data for 4.0 seconds. The 261 shots
and 261 receivers are spread over the top of the model from
290m to 4190m in the horizontal direction, with 15m spacing
at the depth of 20m. The data was generated with iWave, and
inverted with Devito. Figure 2 shows one shot record after
receiver-side deghost and extrapolation to surface, indicating
the strong multiples inside. In LSRTM, we rerandomize data
subset of 12 shots in every iteration, roughly 5% of the total
data. We totally run one data pass in inversion. We also use the
pre-conditioners mentioned in Yang et al. (2016) to accelerate
the inversion.
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Figure 1: Slowness square background model modified from
Sigsbee2A

The image we get by inverting all the reflection data directly
with absorbing surface and dipole sources has interference of
some shadows of the relative shallower layers. These shadows
are harder to identify than those in deep water case and they
are almost as strong as true layer interfaces. Figure 3a clearly
shows these shadows, which will be wiped out by areal source
injection, shown in Figure 3b. Figure 3b is not perfect, espe-
cially around the area of these two refraction points near 2.5km
and near the ocean bottom. The remaining weak shadows near
the ocean bottom are due to the fact that we invert the den-
sity perturbation into a velocity perturbation. Figure ?? clearly
shows the difference between the images with and without
areal source injection. By comparing the linearized data of only
dipole point source Born modelling with the recovery model
perturbations, it’s clear that the shot record generated without
our methods still contains multiples. While, multiples in the
shot record generated with the recovery model perturbation of
our method are pressed a lot.
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Figure 2: One shot record of areal source
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(a) Inverted image with all the reflection data without areal source injection
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(b) Inverted image with all the reflection data with areal source injection

Figure 3: Images by all the reflection data with and without
areal source injection
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CONCLUSIONS

In this work, we image primaries and multiples jointly by spar-
sity promoting LS-RTM using an areal source injection that
included the downgoing wavefield and a time-domain formula-
tion of the linearized Bregman method. With this methodology,
we remove imaging artifacts related to the presence of surface-
related multiples induced by a shallow layer. These types of
multiples are difficult to remove by methods such as SRME. In-
stead of removing these multiples, we image them by including
the downgoing wavefield in the Born modeling operator. In this
wat, we even take advantage of extra illumination that stems
from these multiples, whose bounce points at the surface can
be considered as additional insonifying secondary sources. For
this reason, the image obtained by our method is better illumi-
nated in the shallow parts of the sedimental layers. The cost of
this method is same as the cost of inverting primaries, one RTM
computation roughly. Because our work uses recently devel-
oped just-in-time compiler technology for time-stepping finite
difference, we are in a good position to extend the presented
approach to 3D seismic.

ACKNOWLEDGEMENTS

We would like to acknowledge Mathias Louboutin and Philipp
Witte for the platform work of Devito and Julia interface for
the time stepping finite difference modeling code. We also
thank the authors of iWave. This research was carried out as
part of the SINBAD project with the support of the member
organizations of the SINBAD Consortium.

%)

<}]

E =

[ e
2.5~ \\'
3t = e ~ ]
3.5¢ .
4l |

50 100 150 200 250
Traces

(a) Linearized data of point source Born modelling with recovery model perturbation
without areal source injection
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(b) Linearized data of point source Born modelling with recovery model perturbation
with areal source injection

Figure 4: Comparison between linearized data of point source
Born modelling with recovery model perturbations with and
without our method
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