A denoising formulation of Full-Waveform Inversion

Rongrong Wang and Felix J. Herrmann
Outline

1. Motivation
2. Formulation of the proposed method
3. Algorithm development
4. Numerical tests
Motivation

Noises in observed data consist of:

- spatial and spectral discretization errors
- inaccurate PDE modeling, boundary reflections, multiples
- source estimation error, unknown & interfering sources
- trace truncation error
- timing error
- receiver location error
- measurement noise

- modeling error
- acquisition error

- interior of the domain
- boundary
Motivation—the Failures of FWI

When measurement noise is "spiky"

[Aravkin, A., van Leeuwen, T., & Herrmann, F J, 2012]
Motivation—the Failures of FWI

When water velocity is wrong

True model

FWI inversion

[Peters, A., & Herrmann, F J, 2014]
FWI & its relaxation

FWI requires strict satisfaction of the PDE

\[
\min_{m,u_i,i=1,...,n_s} \sum_{i=1}^{n_s} \| P_{\Omega_i} u_i - d_i \|_2^2
\]

subject to \(A(m) u_i = q_i, i = 1, ..., n_s \)

- \(P_{\Omega_i} \): restriction operator
- \(q_i \): \(i \)th source
- \(A \): Time stepping or Helmholtz operator
- \(d_i \): Observed data for the \(i \)th source
- \(u_i \): wavefield associated to the \(i \)th source

- Implicitly assumed that noise is Gaussian distributed along sources and receivers
- Neglects modeling errors
- Cannot accommodate prior information of noise level
- Becomes problematic when water velocity is wrong
FWI & its relaxation

Direct relaxation of PDE constraint

\[
\min_{m, u_i, i=1, \ldots, n_s} \sum_{i} \| P_{\Omega_i} u_i - d_i \|_2
\]

subject to \(\| A(m) u_i - q_i \|_2 \leq \epsilon, i = 1, \ldots, n_s \)
FWI & its relaxation

Direct relaxation of PDE constraint

\[
\min_{m, u_i, i=1, \ldots, n_s} \sum_i \| P_{\Omega_i} u_i - d_i \|_2 \quad \text{subject to} \quad \| A(m) u_i - q_i \|_2 \leq \varepsilon, \quad i = 1, \ldots, n_s
\]

Hard to choose!
FWI & its relaxation

Direct relaxation of PDE constraint

\[
\min_{m, u_i, i=1, \ldots, n_s} \sum_i \| P_{\Omega_i} u_i - d_i \|_2
\]

subject to \(\| A(m) u_i - q_i \|_2 \leq \epsilon_i, i = 1, \ldots, n_s \)

Hard to choose!

Flip the objective and the constraint

\[
\min_{m, u_i, i=1, \ldots, n_s} \| A(m) u_i - q_i \|_2^2
\]

subject to \(\| P_{\Omega_i} u_i - d_i \|_2 \leq \epsilon_i, i = 1, \ldots, n_s \)
FWI & its relaxation

Direct relaxation of PDE constraint

\[
\min_{m, u, i=1, \ldots, n_s} \sum_i \| P_{\Omega_i} u_i - d_i \|_2
\]
subject to \(\| A(m) u_i - q_i \|_2 \leq \epsilon_i, i = 1, \ldots, n_s \)

Flip the objective and the constraint

\[
\min_{m, u, i=1, \ldots, n_s} \| A(m) u_i - q_i \|_2^2
\]
subject to \(\| P_{\Omega_i} u_i - d_i \|_2 \leq \epsilon_i, i = 1, \ldots, n_s \)

Hard to choose!

Noise level
FWI & its relaxation

Direct relaxation of PDE constraint

\[
\min_{m, u_i, i=1, \ldots, n_s} \sum_i \| P_{\Omega_i} u_i - d_i \|_2
\]

subject to \(\| A(m) u_i - q_i \|_2 \leq \varepsilon, i = 1, \ldots, n_s \)

Flip the objective and the constraint

\[
\min_{m, u_i, i=1, \ldots, n_s} \| A(m) u_i - q_i \|_2^2
\]

subject to \(\| P_{\Omega_i} u_i - d_i \|_2 \leq \varepsilon, i = 1, \ldots, n_s \)

Decomposing the wavefields variable

\[
u_i = P_{\Omega_i}^T P_{\Omega_i}^c u_i + P_{\Omega_i}^T P_{\Omega_i} u_i
\]

Boundary part

Interior part

Hard to choose!

Noise level
FWI & its relaxation

Direct relaxation of PDE constraint

\[
\min_{m,u,i=1,...,n_s} \sum_i \| P_{\Omega_i} u_i - d_i \|_2 \leq \varepsilon, i = 1, ..., n_s
\]

Flip the objective and the constraint

\[
\min_{m,u,i=1,...,n_s} \| A(m) u_i - q_i \|_2 \leq \varepsilon, i = 1, ..., n_s
\]

Decomposing the wavefields variable

\[
u_i = P_{\Omega_i}^T \tilde{P}_{\Omega_i}^c u_i + P_{\Omega_i}^T P_{\Omega_i} u_i\]

Hard to choose!

Noise level

Boundary part

Interior part

b_i
FWI & its relaxation

Direct relaxation of PDE constraint

$$\min_{m, u_{i}, i=1, \ldots, n_s} \sum_i \| P_{\Omega_i} u_i - d_i \|_2$$

subject to $\| A(m) u_i - q_i \|_2 \leq \varepsilon_i, i = 1, \ldots, n_s$

Flip the objective and the constraint

$$\min_{m, u_{i}, i=1, \ldots, n_s} \| A(m) u_i - q_i \|_2^2$$

subject to $\| P_{\Omega_i} u_i - d_i \|_2 \leq \varepsilon_i, i = 1, \ldots, n_s$

Decomposing the wavefields variable

$$u_i = P_{\Omega_i}^T P_{\Omega_i}^c u_i + P_{\Omega_i}^T P_{\Omega_i} b_i$$

$$u_i \text{ boundary part}$$

$$u_i \text{ interior part}$$

$$b_i \text{ noise level}$$

$$v_i \text{ interior part}$$

$$\min_{m, b_{i}, v_{i}, i=1, \ldots, n_s} \| A(m)(P_{\Omega_i}^T v_i + P_{\Omega_i}^T b_i) - q_i \|_2^2$$

subject to $\| b_i - d_i \|_2 \leq \varepsilon_i, i = 1, \ldots, n_s$
The denoising formulation (FWIDN)

We call it the denoising formulation of FWI

\[
\min_{m, b_i, v_i, i=1, \ldots, n_s} \| A(m) (P_{\Omega_i}^T v_i + P_{\Omega_i}^T b_i) - q_i \|_2^2 \\
\text{subject to } \| b_i - d_i \|_2 \leq \epsilon_i, i = 1, \ldots, n_s
\]

Pros:
- allows noise levels \(\epsilon_i \) to vary with sources, and allows \(\epsilon_i = 0 \)
- ensures reasonable PDE fidelity while preventing overfit
- all pros of WRI

Cons: algorithmically & computationally more demanding
FWI-DN – a more general form

Weighted/preconditioned least-squares objective

\[
\min_{m,b_i,v_i,i=1,...,n_s} \|D_z(A(m)(P_{\Omega_i}^T v_i + P_{\Omega_i}^T b_i) - q_i)\|_2^2
\]

subject to \(\|b_i - d_i\|_2 \leq \epsilon_i, i = 1, ..., n_s\)

- \(D_z\) reshapes PDE misfit distribution
- Impose looser PDE constraint at shallow part where the model is “noisier”
- Examples of \(D_z\): linear depth weighting, two-level depth weighting

\[
D_z f(x, z) = z f(x, z) \quad D_z f(x, z) = \chi_{z<z_0} f(x, z) + 2\chi_{z\geq z_0} f(x, z)
\]
Solving FWI-DN

Strategy: alternatively update m and $b_i, i = 1, \ldots, n_s$

At iteration k,

1. fix m^k, solve for $b_i^{k+1}, i = 1, \ldots, n_s$ from

 $$(b_i^{k+1}, v_i^{k+1}) = \arg \min_{b_i, v_i, i=1,\ldots,n_s} \|D_z(A(m^k)(P_{\Omega_i}^T v_i + P_{\Omega_i}^T b_i) - q_i)\|_2^2$$

 subject to $\|b_i - d_i\|_2 \leq \epsilon_i, i = 1, \ldots, n_s$

2. for fixed $b_i^{k+1}, i = 1, \ldots, n_s$, update m^k by solving T steps of

 $$\min_{m, v_i, i=1,\ldots,n_s} \sum_{i=1}^{n_s} \|D_z(A(m)(P_{\Omega_i}^T v_i + P_{\Omega_i}^T b_i^{k+1}) - q_i)\|_2^2$$

 (P_m)
Solving for \((P_d) \) — a denoising step

\[
(P_d) \quad \text{Fix } m^k, \text{ solve for } b_i^{k+1} \text{ from }
\]

\[
(b_i^{k+1}, v_i^{k+1}) = \arg \min_{b_i, v_i} \| D_z(A(m^k)(P_{\Omega_i}^T v_i + P_{\Omega_i}^T b_i) - q_i) \|_2^2
\]

subject to \(\|b_i - d_i\|_2 \leq \epsilon_i \),
Solving for \((P_d)\) — a denoising step

\((P_d)\) Fix \(m^k\), solve for \(b_i^{k+1}\) from

\[
(b_i^{k+1}, v_i^{k+1}) = \arg\min_{b_i, v_i} \|D_z(A(m^k)(P_{\Omega_i}^T v_i + P_{\Omega_i}^T b_i) - q_i)\|_2^2
\]

subject to \(\|b_i - d_i\|_2 \leq \epsilon_i\),

The Lagrangian dual of \((P_d)\) is

\[
\max_{\lambda \geq 0} \phi(\lambda)
\]

where

\[
\phi(\lambda) = \min_{u_i} \|D_z(A(m)u_i - q_i)\|_2^2 + \lambda\|P_{\Omega_i} u_i - d_i\|_2^2 - \lambda \epsilon_i
\]

Solving for \((P_d) \) — a denoising step

\[
(P_d) \quad \text{Fix } m^k, \text{ solve for } b_i^{k+1} \text{ from }

(b_i^{k+1}, v_i^{k+1}) = \arg \min_{b_i, v_i} \| D_z (A(m^k)(P_{\Omega_i}^T v_i + P_{\Omega_i}^T b_i) - q_i) \|_2^2
\]

subject to \(\| b_i - d_i \|_2 \leq \epsilon_i \),

The Lagrangian dual of \((P_d) \) is

\[
\max_{\lambda \geq 0} \phi(\lambda)
\]

where

\[
\phi(\lambda) = \min_{u_i} \| D_z (A(m) u_i - q_i) \|_2^2 + \lambda \| P_{\Omega_i} u_i - d_i \|_2^2 - \lambda \epsilon_i
\]

Solving for \((P_d)\) — a denoising step

\(\phi(\lambda)\) has closed-form gradient & Hessian

\[
\phi'(\lambda) = \left\| P_{\Omega_i} \bar{u}_i(\lambda) - d_i \right\|^2_2 - \epsilon_i
\]

\[
\phi''(\lambda) = -2(P_{\Omega_i} \bar{u}_i(\lambda) - d_i)^T P_{\Omega_i} C^{-1} P_{\Omega_i}^T (P_{\Omega_i} \bar{u}_i - d_i)
\]

where

\[
C = A(m)^T D_z^T D_z A(m) + \lambda P_{\Omega_i}^T P_{\Omega_i} \quad \bar{u}_i(\lambda) = \begin{bmatrix} D_z(A(m^k)) \end{bmatrix}^\dagger \begin{bmatrix} D_z(q_i) \\ \sqrt{\lambda} P_{\Omega_i} \end{bmatrix}
\]

Newton steps for \(\lambda\)

\[
\lambda^{k+1} = \lambda^k - \phi'(\lambda)/\phi''(\lambda)
\]

After finding the minimizer \(\lambda^*\), the primal optimizers are

\[
\nu_i^{k+1} = P_{\Omega_i} \bar{u}_i(\lambda^*), \quad \nu_i^{k+1} = P_{\Omega_i} \bar{u}_i(\lambda^*)
\]
Solving for \((P_m)\)

For fixed \(b_i^{k+1}, i = 1, ..., n_s\), update \(m^k\) by solving \(T\) steps of

\[
(P_m) \min_{m,v_i,i=1,...,n_s} \sum_{i=1}^{n_s} \|D_z(A(m)(P_{\Omega_i}^T v_i + P_{\Omega_i}^T b_i^{k+1}) - q_i)\|_2^2
\]
Solving for \((P_m) \)

For fixed \(b_{i+1}^k, i = 1, \ldots, n_s \), update \(m^k \) by solving \(T \) steps of

\[
(P_m) \quad \min_{m,v_i,i=1,\ldots,n_s} \sum_{i=1}^{n_s} \| D_z(A(m)(P_{\Omega_i}^T v_i + P_{\Omega_i}^T b_{i+1}^k) - q_i) \|^2_2
\]

Solve by variable projection

[Aravkin and van Leeuwen, 2012]
Solving for \((P_m) \)

For fixed \(b_i^{k+1}, i = 1, \ldots, n_s \), update \(m^k \) by solving \(T \) steps of

\[
(P_m) \quad \min_{m, v_i, i=1,\ldots,n_s} \sum_{i=1}^{n_s} \| D_z(A(m)(P_{\Omega_i}^T v_i + P_{\Omega_i}^T b_i^{k+1}) - q_i)\|_2^2
\]

Solve by variable projection

[Aravkin and van Leeuwen, 2012]
Algorithm and Complexity

Inputs: \(m_0, d_i, q_i, \ i = 1, \ldots, n_s, T, K \)

For \(\omega = \omega_1, \ldots, \omega_n \) do

solve \((P_d)\) using \(T\) iterations of Newton updates on \(\lambda\)

performs \(K\) gradient or L-BFGS updates on \(m\) towards the minimizer of \((P_m)\)

Endfor

On average, 1 update of \(m\) requires: 2 PDE solves for FWI

2 PDE solves for WRI

3-5 PDE solves for FWI-DN
Case Study
Test 1: robustness under non-uniform noise along sources
Test 1

- Frequency continuation using batches [3,3.5][3.5,4]...[14.5,15]Hz
- Source spacing : 240m
- Receiver spacing : 48m
- SNR=0 for low frequency data 3-10Hz
- SNR=25dB for high frequency data 10-15Hz
- Linear depth weighting
- Noise level \(\epsilon_{sj} = 3\epsilon_{si} \) where

 \[i = 1, \ldots, \lfloor n_s/2 \rfloor, j = \lfloor n_s/2 \rfloor + 1, \ldots, n_s \]
Method for comparison: weighted FWI

\[
\min_m \sum_{i \in N_1} 9\|P_{\Omega i} A^{-1}(m)q_i - d_i\|^2_2 + \min_m \sum_{i \in N_2} \|P_{\Omega i} A^{-1}(m)q_i - d_i\|^2_2
\]

where

\[N_1 = \{1, ..., \left\lfloor \frac{n_s}{2} \right\rfloor\}, N_2 = \{\left\lfloor \frac{n_s}{2} \right\rfloor + 1, ..., n_s\}\]
Test 1

Inverted model w/ weighted FWI

Inverted model w/ FWI-DN
Test 2: robustness under modeling error
• Frequency continuation using batches [3,3.5][3.5,4]...[14.5,15]Hz
• source spacing : 240m
• receiver spacing : 48m
• source depth: 12m
• True source q: ricker wavelet at 10Hz
• Source used for inversion: 0.8q
• Linear depth weighting
Test 2

Inverted model w/ FWI

Inverted model w/ FWI-DN with $\epsilon = 0$
Conclusion

- We proposed a denoising version of FWI
- We observed weighted/preconditioned PDE misfits dramatically increase robustness to modeling error
- The formulation makes incorporating prior knowledge of noise level convenient w/o increasing too much of complexity
Acknowledgements

This research was carried out as part of the SINBAD project with the support of the member organizations of the SINBAD Consortium.