Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2017 SLIM group @ The University of British Columbia.

A denoising formulation of Full-Waveform Inversion

Rongrong Wang and Felix J. Herrmann

Outline

- 1. Motivation
- 2. Formulation of the proposed method
- 3. Algorithm development
- 4. Numerical tests

Motivation

Noises in observed data consist of:

[Aravkin, A., van Leeuwen, T., & Herrmann, F J, 2012]

Motivation—the Failures of FWI

When measurement noise is ``spiky"

True

Initial

(b)

Model misfit for inversion with **Student's t penalty**

[Peters, A., & Herrmann, F J, 2014]

Motivation—the Failures of FWI

FWI requires strict satisfaction of the PDE $\min_{m, u_i, i=1, \dots, n_s} \sum_{i} \|P_{\Omega_i} u_i - d_i\|_2^2$ subject to $A(m)u_i = q_i, i = 1, ..., n_s$ P_{Ω_i} : restriction operator q_i : *i*th source A : Time stepping or Helmholtz operator d_i : Observed data for the *i*th source

 u_i : wavefield associated to the *i*th source

- Implicitly assumed that noise is Gaussian distributed along sources and receivers
- Neglects modeling errors
- Cannot accommodate prior information of noise level

Becomes problematic when water velocity is wrong

Direct relaxation of PDE constraint

 m, u_i

subje

$$\min_{i,i=1,...,n_s} \sum_{i} \|P_{\Omega_i} u_i - d_i\|_2$$

lect to $\|A(m)u_i - q_i\|_2 \le \epsilon, i = 1,...,n_s$

Direct relaxation of PDE constraint

 m, u_i

subje

$$\min_{i,i=1,...,n_s} \sum_{i} \|P_{\Omega_i} u_i - d_i\|_2$$

$$\text{Hard to choose!}$$

$$\text{ject to } \|A(m)u_i - q_i\|_2 \leq \epsilon, i = 1,...,n_s$$

Direct relaxation of PDE constraint

 m, u_i

subj

Flip the objective and the constraint

 m, u_i

$$\min_{\substack{i,i=1,\ldots,n_s}} \sum_{i} \|P_{\Omega_i} u_i - d_i\|_2$$
Hard to choose!
$$\text{Hord to choose!}$$

$$\text{Hord to } \|A(m)u_i - q_i\|_2 \leq \mathbf{O}^i = 1, \ldots, n_s$$

$$\min_{\substack{i=1,\ldots,n_s}} \|A(m)u_i - q_i\|_2^2$$

$$\text{Hord to } \|P_{1,\ldots,n_s} \| d_i \| \leq \epsilon \quad i = 1, \ldots, n_s$$

subject to $||P_{\Omega_i}u_i - d_i||_2 \le \epsilon_i, i = 1, ..., n_s$

Direct relaxation of PDE constraint

 m, u_i

subje

Flip the objective and the constraint

 m, u_i

subje

$$\begin{split} \min_{i,i=1,...,n_s} & \sum_{i} \|P_{\Omega_i} u_i - d_i\|_2 \\ \text{Hard to choose!} \\ \text{ject to } \|A(m)u_i - q_i\|_2 \leq \epsilon, i = 1, ..., n_s \\ \\ \min_{i,i=1,...,n_s} \|A(m)u_i - q_i\|_2^2 & \text{Noise level} \\ \text{ect to } \|P_{\Omega_i} u_i - d_i\|_2 \leq \epsilon_i, i = 1, ..., n_s \end{split}$$

Direct relaxation of PDE constraint

 m, u_{a}

subj

Flip the objective and the constraint m, u_i , subjective subjective $m_i = m_i + \frac{1}{2} + \frac{$

Decomposing the wavefields variable $u_i =$

$$\min_{i,i=1,...,n_s} \sum_{i} \|P_{\Omega_i} u_i - d_i\|_2 \\
\text{Hard to choose!} \\
\text{ject to } \|A(m)u_i - q_i\|_2 \leq \mathbf{O}_i = 1, ..., n_s \\
\min_{i,i=1,...,n_s} \|A(m)u_i - q_i\|_2^2 \\
\text{noise level} \\
\text{ect to } \|P_{\Omega_i} u_i - d_i\|_2 \leq \mathbf{O}_i, i = 1, ..., n_s \\
P_{\Omega_i^c}^T P_{\Omega_i^c} u_i + \mathbf{O}_{\Omega_i}^T P_{\Omega_i} u_i \\
\text{Boundary part}$$

Interior part

Direct relaxation of PDE constraint

Flip the objective and the constraint

Decomposing the wavefields variable

 $m, b_i,$

subje

$$\begin{split} \min_{i,i=1,...,n_s} & \sum_{i} \|P_{\Omega_i} u_i - d_i\|_2 \\ \text{Hard to choose!} \\ \text{ject to } \|A(m)u_i - q_i\|_2 \leq \mathbf{O}^{i} = 1, ..., n_s \\ & \min_{i,i=1,...,n_s} \|A(m)u_i - q_i\|_2^2 \\ \text{fect to } \|P_{\Omega_i} u_i - d_i\|_2 \leq \mathbf{O}^{i}, i = 1, ..., n_s \\ & P_{\Omega_i^c}^T P_{\Omega_i^c} u_i + \mathbf{O}_{\Omega_i^c}^T P_{\Omega_i} u_i \\ \text{Interior part} & \mathbf{b}_i \\ & \min_{i,v_i,i=1,...,n_s} \|A(m)(P_{\Omega_i^c}^T v_i + P_{\Omega_i}^T b_i) - q_i\|_2^2 \\ \text{ect to } \|b_i - d_i\|_2 \leq \epsilon_i, i = 1, ..., n_s \end{split}$$

The denoising formulation (FWIDN) We call it the denoising formulation of FWI

$$\min_{\substack{m,b_i,v_i,i=1,\ldots,n_s}} \|A(m)(P_{\varsigma})\|$$

subject to $\|b_i - d_i\|_2 \le \epsilon$

Pros:

- allows noise levels ϵ_i to vary with sources, and allows $\epsilon_i = 0$ ensures reasonable PDE fidelity while preventing overfit
- all pros of WRI

Cons: algorithmically & computationally more demanding

- $P_{\Omega_i^c}^T v_i + P_{\Omega_i}^T b_i) q_i \|_2^2$
- $\epsilon_i, i = 1, ..., n_s$

FWI-DN – a more general form

Weighted/preconditioned least-squares objective

$$\min_{\substack{m,b_i,v_i,i=1,\ldots,n_s}} \|\mathcal{D}_z(A(m)(P_{\Omega_i^c}^T v_i + P_{\Omega_i}^T b_i) - q_i)\|_2^2$$

subject to $\|b_i - d_i\|_2 \le \epsilon_i, i = 1, \ldots, n_s$

- \mathcal{D}_{γ} reshapes PDE misfit distribution

Impose looser PDE constraint at shallow part where the model is "noisier" • Examples of \mathcal{D}_z : linear depth weighting, two-level depth weighting

 $\mathcal{D}_z f(x, z) = z f(x, z)$ $\mathcal{D}_z f(x, z) = \chi_{z < z_0} f(x, z) + 2\chi_{z \ge z_0} f(x, z)$

Solving FWI-DN

Strategy: alternatively update m and $b_i, i = 1, ..., n_s$ At iteration k, **1.** fix m^k , solve for b_i^{k+1} , $i = 1, ..., n_s$ from

$$(b_i^{k+1}, v_i^{k+1}) = \arg\min_{\substack{b_i, v_i, i=1, \dots, n_s}} \|$$

subject to $\|b_i - d$

2. for fixed
$$b_i^{k+1}$$
, $i = 1, ..., n_s$

$$\min_{m,v_i,i=1,\ldots,n_s} \sum_{i=1}^{n_s} \|\mathcal{D}_z(A(m)(P_{\Omega_i^c}^T))\|_{i=1}$$

- (P_d) $\|\mathcal{D}_{z}(A(m^{k})(P_{\Omega_{i}^{c}}^{T}v_{i}+P_{\Omega_{i}}^{T}b_{i})-q_{i})\|_{2}^{2}$ $d_i \|_2 \le \epsilon_i, i = 1, \dots, n_s$
- , update m^k by solving T steps of (P_m)
- $||_{i}^{2}v_{i} + P_{\Omega_{i}}^{T}b_{i}^{k+1}) q_{i})||_{2}^{2}$

Solving for (P_d) — a denoising step Fix m^k , solve for b_i^{k+1} from (P_d) $(b_i^{k+1}, v_i^{k+1}) = \arg\min_{b_i, v_i} \|\mathcal{D}_z(A(m^k)(P_{\Omega_i^c}^T v_i + P_{\Omega_i}^T b_i) - q_i)\|_2^2$ subject to $||b_i - d_i||_2 \le \epsilon_i$,

$$\begin{array}{l} \textbf{Solving for } \left(P_d\right) & -\textbf{a der}\\ \left(P_d\right) \quad \textbf{Fix } m^k \text{, solve for } b_i^{k+1} \text{ from}\\ (b_i^{k+1}, v_i^{k+1}) = \arg\min_{b_i, v_i} \|\mathcal{D}_z(A(m^k)(P_{\Omega_i^c}^T v_i + P_{\Omega_i}^T b_i) \\ & \text{subject to } \|b_i - d_i\|_2 \leq \epsilon_i, \end{array}$$

The Lagrangian dual of (P_d) is $\max_{\lambda \ge 0} \phi(\lambda)$ where $\phi(\lambda) = \min_{u_i} \|\mathcal{D}_z(A(m)u_i - q_i)\|_2^2 +$

Strong duality principle [More, 1993] guarantees primal & dual optimality agree

$$\lambda \| P_{\Omega_i} u_i - d_i \|_2^2 - \lambda \epsilon_i$$

$$\begin{aligned} & \text{Solving for } (P_d) - \text{a det} \\ & (P_d) \quad \text{Fix } m^k \text{, solve for } b_i^{k+1} \text{ from} \\ & (b_i^{k+1}, v_i^{k+1}) = \arg\min_{b_i, v_i} \|\mathcal{D}_z(A(m^k)(P_{\Omega_i^c}^T v_i + P_{\Omega_i}^T b_i) \\ & \text{subject to } \|b_i - d_i\|_2 \leq \epsilon_i, \end{aligned}$$

The Lagrangian dual of (P_d) is $\max_{\lambda\geq 0}\phi(\lambda)$ where $\phi(\lambda) = \min_{\alpha} \|\mathcal{D}_z(A(m)u_i - q_i)\|_2^2 + \lambda \|P_{\Omega_i}u_i - d_i\|_2^2 - \lambda\epsilon_i$ u_i

Strong duality principle [More, 1993] guarantees primal & dual optimality agree

Solving for (P_d) — a denoising step

- $\phi(\lambda)$ has closed-form gradient & Hessian
 - $\phi'(\lambda) = \|P_{\Omega_i}\bar{u}_i(\lambda)\|$
 - $\phi''(\lambda) = -2(P_{\Omega_i}\bar{u}_i(\lambda))$

where

 $C = A(m)^T \mathcal{D}_z^T \mathcal{D}_z A(m) + \lambda P_{\Omega}^T$

Newton steps for λ

 $\lambda^{k+1} = \lambda^k - \phi'(\lambda) / \phi''(\lambda)$

After finding the minimizer λ^* , the primal optimizers are

$$v_i^{k+1} = P_{\Omega_i^c} \bar{u}_i(\lambda^*),$$

$$-d_{i} \|_{2}^{2} - \epsilon_{i}$$
$$-d_{i} \|_{2}^{T} P_{\Omega_{i}} C^{-1} P_{\Omega_{i}}^{T} (P_{\Omega_{i}} \bar{u}_{i} - d_{i})$$
$$\bar{P}_{\Omega_{i}} \quad \bar{u}_{i}(\lambda) = \begin{bmatrix} \mathcal{D}_{z}(A(m^{k})) \\ \sqrt{\lambda}P_{\Omega_{i}} \end{bmatrix}^{\dagger} \begin{bmatrix} \mathcal{D}_{z}(q_{i}) \\ \sqrt{\lambda}d_{i} \end{bmatrix}$$

$$v_i^{k+1} = P_{\Omega_i} \bar{u}_i(\lambda^*)$$

Solving for (P_m)

For fixed b_i^{k+1} , $i = 1, ..., n_s$, update m^k by solving T steps of

$$\|(P_{\Omega_i^c}^T v_i + P_{\Omega_i}^T b_i^{k+1}) - q_i)\|_2^2$$

Solving for (P_m)

For fixed b_i^{k+1} , $i = 1, ..., n_s$, update m^k by solving T steps of

Solve by variable projection

$$\|(P_{\Omega_i^c}^T v_i + P_{\Omega_i}^T b_i^{k+1}) - q_i)\|_2^2$$

[Aravkin and van Leeuwen, 2012]

$$\begin{aligned} & \text{Solving for } (P_m) \\ & \text{For fixed } b_i^{k+1}, i = 1, ..., n_s \text{, update } m^k \text{ by solving T steps of} \\ & (P_m) \min_{m, v_i, i = 1, ..., n_s} \sum_{i=1}^{n_s} \| \mathcal{D}_z(A(m)(P_{\Omega_i^c}^T v_i + P_{\Omega_i}^T b_i^{k+1}) - q_i) \|_2^2 \\ & \text{Solve by variable projection} \\ & \min_{m, v_i, i = 1, ..., n_s} \sum_{i=1}^{n_s} \| \mathcal{D}_z(A(m)(P_{\Omega_i^c}^T v_i + P_{\Omega_i}^T b_i^{k+1}) - q_i) \|_2^2 \equiv f(m, v_1, ..., v_{n_s}) \\ & \iff \min_{m, v_i, i = 1, ..., n_s} f(m, v_1, ..., v_{n_s}) = \min_m f(m, \bar{v}_1, ..., \bar{v}_{n_s}) \quad (v_1, ..., v_{n_s}) = \arg\min_{v_1, ..., v_{n_s}} f(m, v_1, ..., v_{n_s}) \end{aligned}$$

, 2012]

 $, ..., v_{n_s})$

Algorithm and Complexity

Inputs: $m_0, d_i, q_i, i = 1, ..., n_s$, T, K For $\omega = \omega_1, ..., \omega_n$ do solve (P_d) using T iterations of Newton updates on λ Endfor

On average, 1 update of *m* requires: 2 PDE solves for FWI

- performs K gradient or L-BFGS updates on m towards the minimizer of (P_m)

2 PDE solves for WRI 3-5 PDE solves for FWI-DN

Case Study

Test 1: robustness under non-uniform noise along sources

- Frequency continuation using batches [3,3.5][3.5,4]....[14.5,15]Hz
- source spacing : 240m
- receiver spacing : 48m
- SNR=0 for low frequency data 3-10Hz
- SNR=25dB for high frequency data 10-15Hz
- Linear depth weighting
- noise level $\epsilon_{s_j} = 3\epsilon_{s_i}$ where

 $i = 1, ..., \lfloor n_s/2 \rfloor, j = \lfloor n_s/2 \rfloor + 1, ..., n_s$

Method for comparison: weighted FWI

$$\min_{m} \sum_{i \in N_1} 9 \| P_{\Omega_i} A^{-1}(m) q_i - d_i \|_2^2 + \min_{m} \sum_{i \in N_2} \| P_{\Omega_i} A^{-1}(m) q_i - d_i \|_2^2$$

where $N_1 = \{1, ..., \lfloor \frac{n_s}{2} \rfloor\}, N_2 = \{\lfloor \frac{n_s}{2} \rfloor\}$

$$\frac{l_s}{2} \rfloor + 1, \dots, n_s \}$$

Inverted model w/ weighted FWI

Inverted model w/ FWI-DN

Test 2: robustness under modeling error

- Frequency continuation using batches [3,3.5][3.5,4]....[14.5,15]Hz
- source spacing : 240m
- receiver spacing : 48m
- source depth: 12m
- True source q: ricker wavelet at 10Hz
- Source used for inversion: 0.8q
- Linear depth weighting

S

Inverted model w/ FWI-DN with $\epsilon=0$

Conclusion

- We proposed a denoising version of FWI
- modeling error
- increasing too much of complexity

• We observed weighted/preconditioned PDE misfits dramatically increase robustness to

• The formulation makes incorporating prior knowledge of noise level convenient w/o

Acknowledgements

support of the member organizations of the SINBAD Consortium.

This research was carried out as part of the SINBAD project with the

