
A denoising formulation of Full-Waveform Inversion
Rongrong Wang and Felix J. Herrmann,
Seismic Laboratory for Imaging and Modelling, University of British Columbia

ABSTRACT

We propose a wave-equation-based subsurface inversion method
that in many cases is more robust than the conventional Full-
Waveform Inversion. The new formulation is written in a
denoising form that allows the synthetic data to match the ob-
served ones up to a small error. Compared to the Full-Waveform
Inversion, our method treats the noise arising from the data mea-
suring/recording process and that from the synthetic modelling
process separately. Comparing to theWavefields Reconstruction
Inversion, the new formulation mitigates the difficulty of choos-
ing the penalty parameter λ. To solve the proposed optimization
problem, we develop an efficient frequency domain algorithm
that alternatively updates the model and the data. Numerical
experiments confirm strong stability of the proposed method
by comparisons between the results of our algorithm with that
from both plain FWI and a weighted formulation of the FWI.

INTRODUCTION

All wave-equation based seismic inversion techniques suffer
from both additive noise and modelling errors. Albeit smaller,
the latter can cause more damage to the inverted model. Depend-
ing on specific experiment settings, modelling errors arising
from PDE discretization, the use of inaccurate modelling ker-
nels, trace truncations, timing errors, source estimation and
location errors all contribute to the noise in quite different ways.

Thesemodelling errors are not taken into account in conventional
Full-Waveform Inversion (FWI) formulations, where the PDE
constraints are strictly imposed (Tarantola and Valette, 1982;
Virieux and Operto, 2009),

min
m

ns∑
i

‖PΩi
ui − di ‖22

subject to A(m)ui = qi, i = 1, ..., ns.

Following the usual notation, we used qi to denote the ith
source, di to denote the corresponding data, PΩi

to denote
the restriction operator to receiver locations, and A for the
discretized Helmholtz matrix for the model m at a specific
frequency. Although the strict PDE constraints increases the
numerical efficiency by allowing one to eliminate ui and derive
the reduced form,

min
m

ns∑
i

‖PΩi
A(m)−1qi − di ‖22

it is not very effective in handle modelling errors. Note that
modelling errors may be generated from all regions of the model.
They become part of the data after propagating to the receiver
locations. As noise terms, they are often more coherent to than
pure additive noise, therefore the two-norm data misfit may not

be an appropriate way to model them. As is indeed observed,
FWI is very robust to white noise but less so to other types of
noises such as those coming from the source.

A better way of treating the modelling error is to allow a
small misfit in the PDE, like the formulation in the Wavefield
Reconstruction Inversion (WRI) (van Leeuwen and Herrmann,
2013a, 2015)

min
m,ui,i=1,...,ns

ns∑
i

‖PΩi
ui − di ‖22 + λ‖A(m)ui − qi ‖22 .

Despite the similarity to FWI, both the data and model misfits
are now softly penalized in their `2 norms with certain weight
λ containing prior information of their relative strengths van
Leeuwen and Herrmann (2013b). However, setting the parame-
ter λ is a problem, as the modelling error is often unknown. In
contrast, the energy of pure data side noise is easier to evaluate
by data processing techniques as such noise is usually close to
being Gaussian. Note that we consider interfering signals from
unknown sources as modelling error here, the data side noise
only consists of those introduced by the measuring procedure
of the receivers.

Recognizing this relative difficulty of estimating model-side
errors and the relative easiness of estimating data-side errors,
we hereby propose a denoising formulation, named FWI-DN
(denoising), as an alternative to FWI with enhanced stability

min
m,u

∑
i

‖Dz (A(m)ui − qi )‖22 (FWI-DN)

subject to ‖PΩi
ui − di ‖2 ≤ ε i, i = 1, ..., ns

Here ε i is the estimated data-side noise in `2 norm for the
ith shot gather, and Dz is a linear operator that performs
depth weighting on the modelling error with weights that are
nondecreasing with depth. In this way, we avoid the difficulty
to estimate the modelling error, and at the same time acquire
the flexibility of incorporating different noise levels for different
sources.

We end this section by addressing the related weighted FWI. One
may argue that the usual FWI formulation can also be modified
to handle the non-uniform noise case where different sources
or even traces have different noise levels, through introducing
weights to the FWI misfit e.g., Farquharson and Oldenburg
(1998). Specifically, we can reformulate the objective as

min
m

∑
i

wi ‖PΩi
A(m)−1qi − di ‖22 (1)

where a natural choice of the weight could be wi = ε
2
i0
/ε2

i for
some fixed i0 and for all i = 1, ..., ns . This way, the shot gather
corresponding to a larger noise level ε i is relatively lightly



penalized, reflecting the correct believe that this source is less
reliable. However, putting the misfits for all sources in a mixed
objective form causes this formulation fail to provide guarantees
for the final solution to lie inside the ε i-ball of the real data.
Furthermore, due to the nonlinearity of the objective function,
the weighted FWI can get trapped at local minima before
entering the region where the misfits become proportionally to
the weights. To further support these arguments, a comparison
of the performances between theweighted FWI and the proposed
method will be presented in the numerical section.

METHODOLOGY

Solving the denoising problem

To solve FWI-DN, we propose to use the alternative minimiza-
tion method. For numerical efficiency considerations, instead
of updating the wavefields ui (i = 1, ..., ns) and the model m
alternatively, we suggest to do the alternative update between the
data PΩi

ui (i = 1, ..., ns) and the model m. To be more specific,
let us first write out the subproblems. At the k-th iteration, for
fixed mk , we obtain PΩi

uk+1
i by solving a quadratic constraint

problem

PΩi
uk+1
i = arg min

ui
‖Dz (A(mk )ui − qi )‖22, (2)

subject to ‖PΩi
ui − di ‖2 ≤ ε i .

Then fix PΩi
uk+1
i , and solve for mk+1 through (3),

(mk+1, ũk+1) = arg min
m,u1,...,uns

∑
i

‖Dz (A(m)ui − qi )‖22,

subject to PΩi
ui = PΩi

uk+1
i , (3)

where ũk+1 = [ũk+1
1 , ..., ũk+1

ns ] represents a collection of the ns
wavefields that minimizes (3).

Intuitively, each iteration of subproblem (2) can be interpreted
as a data denoising procedure with the output PΩuk+1

i being the
denoised data. The denoised data is then fitted exactly in solving
the subproblem (3). The denoising step will get increasingly
more accurate as the model iterates mk become better.

Notice that subproblem (3) can be written into an unconstrained
formulation

(mk+1, ṽk+1) (4)

= arg min
m,v1,...,vns

ns∑
i=1
‖Dz {A(m)(PT

Ωc
i
vi + PT

Ωi
PΩi

uk+1
i ) − qi }‖22,

where Ωc
i is the complementary set of Ωi and PT

Ωi
is the

transpose of the operator PΩi
. More specifically, (4) is obtained

by setting a new variable vi through vi = PΩc
i

ui and substituting
the ui in (3) by

ui = PT
Ωi

PΩi
ui + PT

Ωc
i

PΩc
i

ui

= PT
Ωi

PΩi
uk+1
i + PT

Ωc
i
vi .

where we have used the constraint in (3). Note that since the
variables ṽk+1

i will not be used in future iterations, the whole
purpose of solving subproblem (4) is to update the model m.

The algorithm now reduces to solving (2) and (4) alternatively.
As we will see in the next section, solving the subproblem (2) for
the wavefields ui to a relatively high accuracy typically involves
several inversions of the augmented system [A; λPΩ] for some
λ. Subproblem (4) can be solved using variable projection
as in the Wavefields Reconstruction Inversion whose cost is
proportional to the number of model updates multiplied by the
cost of augmented system [A; λPΩ] inversion. We found that
the most efficient way to solve the whole (FWI-DN) problem is
to solve (2) with high accuracy during each iteration followed
by performing a few updates of the subproblem (4) for vi and m,
so that the two subproblems have similar computational cost.

Some readers may wonder that instead of (4), why not use
a more natural way of updating m, that is to fix uk+1

i and to
minimize m via

mk+1 = arg min
m

∑
i

‖Dz (A(m)uk+1
i − qi )‖22, (5)

The reason we prefer (4) to (5) is that when solving (5) we
cannot make much progress in updating m since the complete
wavefields remain fixed, whereas this is better in (4) because
only the wavefields at the boundary are fixed.

Solving the denoising problem

The subproblem (2) is a least-squares problem with a norm
inequality constraint. It is known that for this type of problem,
ui can be evaluated by transforming it to a related Lasso problem,
i.e., the penalty formulation of WRI with a specific parameter λ,
and be solved by carrying out one inversion of the augmented
system [A; λPΩ].

Specifically, to solve subproblem (2), we use the Lagrangian
dual approach, which solves the dual problem

max
λ≥0

G(λ) (6)

where G is the Lagrange dual of (2) and λ is the dual variable,
i.e.,

G(λ) = min
ui
‖Dz (A(m)ui − qi )‖22 + λ‖PΩi

ui − di ‖22 − λε i .

Since G is differentiable with respect to λ, one can solve
G′(λ) = 0 for the minimizer λ̂ and use the strong duality (More,
1993) to obtain ui . It is easy to calculate that

G′(λ) = ‖PΩi
ūi (λ) − di ‖22 − ε i

with ūi being the solution to the related Lasso problem

ūi = arg min
ui
‖Dz (A(mk )ui − qi )‖2 + λ‖PΩi

ui − di ‖22, (7)

which has the closed form solution

ūi =
[
Dz (A(mk ))
√
λPΩi

]† [
Dz (qi )√
λdi

]
where † is the pseudo inverse. Also, we can obtain the second
derivative

G′′(λ) = −2(PΩi
ūi − di )T PΩi

C−1PT
Ωi

(PΩi
ūi − di ),



where
C = A(m)TDT

z Dz A(m) + λPT
Ωi

PΩi
.

The equation d′(λ) = 0 can then be solved by the Newton’s
method. Start with λ = λ0 and update

λk+1 = λk − G′(λ)/G′′(λ).

According to the strong duality principle (More, 1993), once
the optimal λ∗ is found, we can obtain uk+1

i through (7).

Updating the model

To solve (4), we use the variable projection approach as in WRI.
For a fixed m, vk+1

i has a unique closed form optimal solution
that minimizes the objective function in (4)

v̄i = Dz (AΩc
i

)†(mk )Dz (qi + AΩi
(mk )PΩi

uki ),

where AΩc
i

(mk ) denotes the submatrix of A(mk ) formed by
columns indexed by Ωc

i . Using this to project out vi and
rewriting (4) as

mk+1 = arg min
m
‖Dz {A(m)(PT

Ωc
i
v̄i + PT

Ωi
PΩi

uk+1
i ) − qi }‖22,

it is easy to calculate its gradient g and Gauss-Newton Hessian
H with respect to m. As mentioned before, for numerical
efficiency we only perform a few updates of m We hence update
m by the Newton’s step

mk+1 = mk − H−1(mk )g(mk ). (8)

Now we summary the main steps of the proposed algorithm.

Algorithm 1 Algorithm for solving WRI-DN

1: procedure Input: di , Ωi , A, m0, T1, T2
2: for frequency = flow, ...., fhigh do
3: for k = 1,... T1 do
4: for each source i ← {1, ..., ns } do
5: update uki by solving (2)
6: end for
7: for j= 1,..., T2 do
8: updating m using (5).
9: end for

10: end for
11: end for
12: end procedure

NUMERICAL EXPERIMENT

Experiment 1

We test the robustness of the proposed method in the presence
of modelling errors. We use a special type of modelling
error coming from inaccurate estimates of the source signature.
The test model is the 2D BG-compass model. Sources and
receivers are placed at 12 m in depth with source spacing 240 m
and receiver spacing 48 m. All sources have the same Ricker
wavelet signature centred at 10 Hz. The wrongly estimated
source signature is a shrinkage of the true one by 20%. We

compare the results of the proposed method with that of the
conventional FWI. For our method, since only modelling errors
exist in this case, we set ε i = 0 and the output of subproblem (2)
is therefore simply PΩi

di . As a result, for each frequency, we
only need to solve the subproblem (4) without any alternating.
We choose a simple linear depth weighting Dz = z, which
we observed greatly enhanced the stability of our algorithm
compared to using a constant weight. The inversions are
performed in frequency domain one frequency slice at a time
from 2Hz to 15 Hz. For each frequency, the minimization
problems for both methods are solved until convergence.

The inverted results from FWI and our method are shown
in Figure 1c and Figure 1d, respectively. Compared to the
true model in Figure 1a, both inversions are kinematically
correct. However, our result is more accurate in high-frequency
reconstruction, therefore has greater smoothness. The final
model reconstruction error of our method is about 60% of that
from the FWI. We also observe that at the shallow part of the
inverted model especially around the receiver locations, our
result is very noisy. This is a consequence of the increased
depth weighting, which pushes the modelling error up to the
shallow part and guarantees the deep part to be stable. Since
the deep part is usually the region of interest, this is a benefit of
incorporating the weight.
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(a) True model
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(b) Initial model
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(c) Inverted model with FWI
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(d) Inverted model with FWI-DN

Figure 1: A comparison of stability of FWI with FWI-DN under
source estimation error: (a) The true model; (b) The initial
model; (c) Inversion result with FWI; (d) Inversion result with
the proposed method FWI-DN and linear depth weighting.

Experiment 2

We test the robustness our method with respect to strong white
Gaussian noise. The SNR of the low-frequency data (2− 10 Hz)
used in this example is 0 dB, and that for high-frequency (10 −
15 Hz) is 25 dB. We use shallow water Marmousi model with
50 m water layer. Sources and receivers are placed at 12m



depth with source and receiver spacing of 240 m and 48 m,
respectively. All the inversions are performed in the frequency
domain one frequency slice at a time from 2 Hz to 15 Hz.

We assume non-uniform noise. The data associated with sources
located on the left half of the top model are polluted by white
Gaussian noise at level ε , and those on the right half are damped
by the same type of noise at a different levels 3ε . In the FWI-DN,
we set the corresponding noise threshold to be 0.8ε and 2.4ε
which are inaccurate and conservative estimates of the true
noise levels. We comment that it is always preferable to choose
a conservative estimate as we do not need the output of the first
subproblem to be completely noise free. This is because the
second subproblem (4) itself is also a stable algorithm that can
handle the rest of the noise. Besides, if the noise threshold ε i is
set too high, then the algorithm will remove a significant portion
of the signal components as well, leading to an unsatisfactory
update of the model.

For comparison, we run both our algorithm and the weighted
FWI. For the latter, we set weights to exactly reflect the prior
information that sources on the left are 3 times more accurate
than those on the right. Specifically, let N1 be the set of source
indices on the left and N2 be those on the right. The weighted
FWI minimizes

min
m

∑
i∈N1

9‖PΩi
A−1(m)qi−di ‖22+

∑
i∈N2

‖PΩi
A−1(m)qi−di ‖22 .

Figure 2c shows the inverted model using weighted FWI started
from the initial guess displayed in Figure 2b. We observed
that the noise is too large for the weighted FWI to even keep
the kinematic correctness of the inversion. In contrast, our
method not only produces a kinematically correct model but
is also able to filter out the noise and keep the smoothness
in the reconstruction. Admittedly, the deep part of the model
is not well reconstructed, due to the fact that the weak signal
components coming from the deep part are filtered out along
with the noise. This seems to be an inevitable consequence
in such a high noise scenario. Moreover, as in the previous
example, there are large inversion errors in the shallow water
layer region, this is due to the depth weighting which allows
a larger modelling error for the shallower part than the deeper
part. Fortunately, this error does not propagate down to affect
the reconstruction of those regions that we are most interest in.

Finally, it is worth mentioning that one can modify the proposed
method into a pure noise attenuation method by deactivating
its model updating step (3). We use the initial guess m0 as a
tuning parameter of the denoiser, and solves

ū = arg min
ui,i=1,...,ns

∑
i

‖Dz (A(m0)ui − qi )‖22

subject to ‖PΩi
ui − di ‖2 ≤ ε i, i = 1, ..., ns .

The output of the algorithm PΩi
ūi is then a smooth approxima-

tion to di . The smoothness is a result of minimizing the PDE
misfit, as wavefields that obey the PDE has a certain level of
regularity. If the noise level ε i is too small, then the output
is close to the input. On the other hand, if ε i is too larger,
say larger than ‖di − d0

i ‖2 with d0
i being the data of the initial

model, then ū is simply the wavefiled of m0, so we lose all the

distance (km)
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

de
pt

h(
km

)

0

0.2

0.4

0.6

0.8

1

1.2

1.4
1.5

2

2.5

3

3.5

4

4.5

5

5.5
(km/s)

(a) True model
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(b) Initial model
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(c) Inverted model with FWI
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(d) Inverted model with FWI-DN

Figure 2: A comparison of robustness of FWI with FWI-DN
under Gaussian noise with SNR=0 dB: (a) The true model; (b)
The initial model; (c) Inversion result with weighted FWI; (d)
Inversion result with the proposed method FWI-DN and linear
depth weighting.

information in the data about δm = mtrue − m0. When ε is
neither too large nor too small, the method smooths the data
towards the direction of the initial guess. Hence the better the
initial guess is, the better the denoiser performs. In addition,
when the computational speed is a concern, one can sacrifice
some accuracy and use a very small m0, say only the top water
layer.

DISCUSSION AND CONCLUSIONS

We proposed a denoising formulation for FWI named FWI-DN,
which separately treats the data-side and model-side noises as
opposed to combing them into one objective as in the conven-
tional FWI. The WRI formulation is in between the proposed
method and the FWI, and is equivalent to our problem if an
oracle is given for the parameter λ that balances the data and
the PDE misfits. In a sense, our formulation is an extension
of the WRI formulation. We proposed an efficient algorithm
for FWI-DN which performs alternating updates on the model
and the data. The part of the algorithm that solves the data
updating subproblem can be used as a stand-alone denoising
method when good initial guesses of the model is available.
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