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SUMMARY

Sparsity promotion based joint microseismic source collocation
and source time function estimation, using Linearized Bregman
algorithm, although simple to implement, suffers from slow
convergence. This is due to the fact that Linearized Bregman
algorithm has only first order of convergence. In this work, we
propose to accelerate the existing Linearized Bregman algo-
rithm using the L-BFGS algorithm. Without any initial guess
for the source location or source time function, our method is
able to estimate the source location and source time function for
kinematically correct smooth velocity model. We demonstrate
the effectiveness of our method for multiple sources spaced
within half a wavelength. We also compare our results with
Linearized Bregman based method in 2.5D instead of 2D.

INTRODUCTION

There has been increased attention towards unconventional
reservoirs in last couple of decades. Unconventional reser-
voirs require some kind of stimulation in the form of hydraulic
fracturing to make them economically viable for production
by connecting weakly connected oil & gas traps through the
fractures. For production purposes and to prevent any kind
of hazardous situations (e.g. interference of these fractures
with pre-existing wells and faults) it is extremely important to
estimate the fracture locations accurately together with other
attributes such as source time function, stress orientation along
these fractures, etc. Among all the available methods, micro-
seismic based methods provide most accurate way to estimate
the above mentioned attributes of fractures (Maxwell, 2014).

As fractures caused by hydraulic fracturing propagate through
the subsurface rocks, they generate microseismic waves that
are recorded by receivers along the surface or receivers along
monitor wells. The recorded microseismic data contains in-
formation about the source attributes such as source location,
source time function, source mechanism etc. One exploits this
microseismic data to find out different source attributes, which
is extremely helpful for drilling decisions, hazard prevention
etc.

Traditional methods based on travel time inversion require
travel time picking and identification of phases such as P and S
wave components (Thurber and Engdahl, 2000; Waldhauser and
Ellsworth, 2000). These methods estimate the location but not
the source time function. Recently developed methods based
on imaging (McMechan, 2010; Gajewski and Tessmer, 2005;
Sun et al., 2015; Nakata and Beroza, 2016) do not require travel
time picking but only estimate source location, again without
the source time function.

Kaderli et al. (2015) suggested a FWI based method to estimate
both source location and source time function in an alternating
fashion. Wang and Alkhalifah (2016) proposed to use FWI

to invert for source location, source time function and the ve-
locity model in an alternating fashion. Both of these works
assumed that the spatial and temporal component of a source
is separable. Moreover, they showed results only for a single
source. However, in real life there can be more than one micro-
seismic sources. Sharan et al. (2016) showed that in order to
use FWI with the assumption of separable source location and
source time function, one need to know the number of sources
beforehand. For hydraulic fracturing scenario the knowledge
of number of microseismic sources is not a trivial problem.
Also, FWI based method suggested by Kaderli et al. (2015)
performs poorly when both the source location and source time
function are unknown, which is mostly the situation for real life
scenario.

In Sharan et al. (2016), the authors exploited the fact that wave
equation itself is an excellent sparsity promoting transform to
simultaneously estimate the microseismic source location &
source time function without any prior assumptions about the
number of sources or any initial guess about the source location
and source time function. They used the Linearized Bregman
algorithm to jointly estimate the microseismic source location
& source time function. Although, this algorithm is simple to
implement, it suffers from slow convergence because of the 1st
order convergence. As each iteration of the algorithm required
two PDE solves (Forward and adjoint wave-equation solve in
time domain), using the Linearized Bregman algorithm can be
too expensive for a complex problem. Huang et al. (2013) and
Yin (2010) showed that the Linearized Bregman algorithm is
equivalent to solving a gradient descent of the dual problem and
therefore they proposed to use a Limited memory BFGS (Liu
and Nocedal, 1989) kind of method to accelerate the conver-
gence of original Linearized Bregman algorithm from 1st order
to 2nd order of convergence. Motivated by this idea, in this
work, we propose to use Linearized Bregman algorithm with
LBFGS to attain faster convergence for the joint microseismic
source-collocation and source time function estimation problem.
We also extend our proposed method to the situations involving
2.5 D wave propagation instead of 2D wave propagation. We
then demonstrate the effectiveness of our method for complex
geology and closely spaced sources with different source-time
functions with different dominant frequencies.

METHODOLOGY

Given a sufficiently accurate velocity model, Sharan et al.
(2016) exploited the fact that the wave equation acts as a spar-
sity promoting “transform” by focusing wavefields on their
correct source locations. Assuming sources are localized in
space and have finite energy along time, Sharan et al. (2016)
proposed to solve

min
U

‖A [m] (U)‖2,1 s.t. ‖P(U)−d‖2 ≤ ε. (1)

Equation 1 aims to minimize the ‖.‖2,1 norm of action of fi-
nite difference time stepping operator A [m], parametrized by



Sparsity-promoting source estimation

squared slowness m, on spatio-temporal wavefield U under the
condition that receiver restriction operator P restricts the wave-
field U to fit the observed microseismic data d within ε , the
two-norm of noise level. The ‖.‖2,1 norm was used to exploit
the fact that sources have finite energy along time but are sparse
along space. The operators A [m](U) and P(U) are linear in
terms of wavefield U. Sharan et al. (2016) proposed to make the
above optimization problem more tractable by a simple change
of variable Q = A [m](U), where Q is a matrix containing spa-
tial temporal distribution of all the sources—i.e. the (i, j) entry
in Qi, j = q(xi, t j). So equation 1 becomes:

min
Q

‖Q‖2,1 s.t. ‖F [m](Q)−d‖2 ≤ ε, (2)

where F [m] = PA [m]−1 is the forward modeling operator
which is a linear operator in terms of Q . Equation 2 is similar to
the classic basis pursuit denoising (BPDN) problem. Motivated
by recent successful application of the linearized Bregman (Yin
et al., 2008; Lorenz et al., 2014) to least-squares migration
(Herrmann et al., 2015), Sharan et al. (2016) proposed to solve
slight convex relaxation of the above optimization problem.
They solve

min
Q

‖Q‖2,1 +
1

2µ
‖Q‖2

F s.t. ‖F [m](Q)−d‖2 ≤ ε, (3)

where ‖.‖F is the Frobenius norm and µ acts as a trade off
parameter between the sparsity and regular two norm terms.
When µ ↑ ∞, equation 3 takes the form of the BPDN problem
in equation 2. Although Linearized Bregman is a simple 3
step algorithm, its iterations require solving the wave equation
and its adjoint to jointly collocate the source locations and es-
timate the associated source signatures (Sharan et al., 2016).
The cost of each iteration of Linearized Bregman depends on
the model size, model dimension (2D or 3D), and on the num-
ber of time samples. For closely spaced sources within half
a wavelength, we need a higher value of µ to ensure sparse
solutions. However, a higher value of µ makes the convergence
of the Linearized Bregman algorithm slow. Therefore, it will
require too many iterations of Linearized Bregman, which is
computationally expensive.

Huang et al. (2013) and Yin (2010) proposed a solution to over-
come the problem of slow convergence of Linearized Bregman.
They proved that the Linearized Bregman method applied to an
optimization problem is equivalent to solving a gradient descent
of its Lagrangian dual. Huang et al. (2013) also suggested that
gradient descent accelerating methods such as Limited memory
BFGS (Liu and Nocedal, 1989) can be incorporated to solve the
dual problem of the original optimization problem. By doing
so, they upgraded the algorithm from 1st order to 2nd order.
From their observations, we propose an algorithm to solve our
`21-norm minimization problem with a ball constraint, in less
number of iterations.

In the original Linearized Bregman algorithm (Sharan et al.,
2016) we only considered the primal variable, which was the
whole source field Q. Now we also work with the dual variable,
which has the dimensions of the observed data, to have a better
approximation of the inverse of the Hessian in the L-BFGS
algorithm. The advantage of this dual formulation is that we

can store the dual variable updates, because of its low memory
requirement, to build the approximation of the inverse of the
Hessian. Hence, by using L-BFGS and the dual variable we
can accelerate the convergence without incurring any extra cost
in terms of memory storage.

To formulate the dual problem, we first write Equation 3 into
the following unconstrained form:

min
Q

‖Q‖2,1 +
1

2µ
‖Q‖2

F + ι‖F [m](Q)−d‖2≤ε , (4)

where ιC is the support function for the set C, defined as

ιC(x) =
{

0, x ∈C,
∞, x /∈C.

(5)

Applying the fact that ι‖F [m](Q)−d‖2≤ε = sup
y
〈F [m](Q)−

d,y〉 − ε‖y‖2 to (4), we obtain the following saddle point
formulation

min
Q

‖Q‖2,1+
1

2µ
‖Q‖2

F−max
y

{
yT (F [m](Q)−d)−ε‖y‖2

}
(6)

To get the dual formulation of the original problem, we can
rewrite equation 6 as

max
y

min
Q

{
‖Q‖2,1+

1
2µ
‖Q‖2

F−yT (F [m](Q)−d)
}
−ε‖y‖2

(7)
where y is the dual variable which has the same smaller dimen-
sion as the data d. The function inside the curly bracket is a
function of y. Denoting it by G(y), the above expression (7)
becomes

max
y

G(y)− ε‖y‖2. (8)

Huang et al. (2013) explained that both the function G(y) and
its derivative have close form representations. As a result, the
dual problem (8) is unconstrained, has differentiable objective
function, and has a close-form derivative. For convenience, we
now rewrite the optimization problem (8) as

min
y

−{G(y)− ε‖y‖2}. (9)

We solve the optimization problem (9) with the L-BFGS itera-
tion (see algorithm 1 below).

Algorithm 1 LBFGS algorithm
1. for k=1,2,. . .
2. Vk+1 = F [m]T (yk) //adjoint solve
3. Qk+1 = Proxµ‖.‖2,1(µVk+1) //sparsity promotion
4. zk+1 = ‖Qk+1‖2,1 +

1
2µ
‖Qk+1−µVk+1‖2

F

5. yk+1 = argminy−dT y+µ‖Vk+1‖2
F + ε‖y‖2− zk+1

6. end

In algorithm 1 the operator Proxµ‖.‖2,1(C) := argminB ‖C‖2,1+
1

2µ
‖C−B‖2

F is the proximal mapping (Combettes and Pesquet,
2011) of the `21 norm.

Line 2 in the algorithm 1 corresponds to back propagation of
the current estimate of the dual variable y in time and space to
update the variable V. In the next step, we scale V by parameter
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µ followed by a “focusing” via the proximal operator to get the
current estimate for the source wavefield Q both in space and
in time. Step 4 corresponds to updating the auxiliary variable
z and step 5 corresponds to updating the dual variable y as
a minimizer of a problem equivalent to problem (9). Hence,
we get the estimate for the source wavefield Q as a byproduct
of solving the minimization problem 9. Since, the dual vari-
able y has the dimension of data, we can store its updates to
better approximate the inverse of the Hessian for the L-BFGS
algorithm.

Once we solve for the source Q, we generate an intensity plot
I(x) =

∑
t |Q(x, t) | by summing the absolute values of Q(x, t)

along time at each grid point. The outliers in the intensity plot
I(x) correspond to the estimated source locations, the temporal
variations of the estimated source wavefield Q(x, t) at the esti-
mated source locations correspond to the estimated source-time
function.

Figure 1 shows the comparison of data error variation with iter-
ations of L-BFGS and Linearized Bregman (LBR) for a given
microseismic dataset and for a given value of µ . We clearly ob-
serve that the data error decays faster for LBFGS based method
in comparison to Linearized Bregman based method. Here, we
choose a higher value of µ to get sparse solutions. A higher
value of µ does not allow the source wavefields Q to be updated
in the early iterations. Therefore, the Linearized Bregman algo-
rithm goes through initial phase of stagnation. In Figure 1 we
also demonstrate the advantage of storing dual variable updates
for improved L-BFGS convergence. We achieve improved con-
vergence without incurring any additional memory cost, since
our dual variable lives in data domain. We compare the conver-
gence for update history size of 5, 20 and 40. We observe better
convergence with increasing L-BFGS update history size.

Figure 1: Data error `2 norm decay with Linearized Bregman
(solid purple curve) and L-BFGS with L-BFGS history size of
5 (solid blue curve), 20 (solid red curve) and 40 (solid orange
curve)

NUMERICAL EXPERIMENTS

We performed two different experiments to compare the efficacy
of the proposed method with respect to Linearized Bregman
based method (Sharan et al., 2016). For both of these exper-
iments, we assume that microseismic sources are monopole
point sources. To demonstrate the effectiveness of our method
in a complex geological situation, we use a part of Marmousi
model with dimensions 3.15km×1.08km (631×217 points)
(Figure 2a). We use 2.5D time-stepping acoustic finite dif-
ference modeling code to generate microseismic data. We set
surface receivers buried at depth of 20m with separation of 10m

to record P-wave data. We use noise free data to simultaneously
estimate source location and source time function. For both
experiments we consider two closely spaced sources within half
a wavelength. The first source is located at (1.625km , 0.73km)
and the second source is located at (1.665km , 0.72km) (Fig-
ure 2a). Both sources are in low velocity zone and separated
within half a wavelength. Both sources are activated at different
times and with different dominant frequencies of 30.0Hz and
25.0Hz respectively. We use 1s record length of microseismic
data (Figure 2b) to jointly estimate the location and source time
function of both the sources.

Experiment 1—True velocity experiment

In the first experiment, we assume that we have access to the
true velocity model. To compare how proposed method works
in comparison to Linearized Bregman algoirthm for our prob-
lem, we perform 50 iterations of both the algorithms for same
value of µ . Figure 2c & 2d are intensity plots corresponding
to the linearized Bregman and the proposed method based on
L-BFGS. The linearized Bregman based method is able to esti-
mate only one source location correctly, namely at (1.625km ,
0.73km) (Figure 2c), whereas the proposed method estimates
both source locations correctly after the same number of itera-
tions (Figure 2d). This clearly demonstrates the faster conver-
gence of the proposed method with compared to the linearized
Bregman based method. Also, the proposed method is able
to give a good estimation of the source time function at both
locations, whereas the linearized Bregman based results only
recovers one source (Figure 3a & 3b). The proposed method
is able to preserve the frequency content of the source time
function at both the source locations. This is evident from the
amplitude spectrum plot of source time function at both the
locations (Figure 3c & 3d). This is because we are working in
2.5D instead of 2D, which prevents any kind of frequency loss
due to 2D wave modeling (Song and Williamson, 1995).

Experiment 2—Smooth velocity experiment

In the 2nd experiment we assume that we only have access to a
smooth velocity model. We still use the data generated in exper-
iment 1 (Figure 2b), but this time we use a smoothed version of
the Marmousi model to jointly estimate the microseismic source
location and source time function of both the sources. We use
125 × 125m2 2d filter to smooth the Marmousi model. For
same value of µ , we perform 100 iterations of linearized Breg-
man based method and the proposed method to jointly estimate
location and source-time function of both the microseismic
sources. As before, with the linearized Bregman based method
we are able to recover only one source location (Figure 4a)
after 100 iterations whereas with the proposed method, we are
able to estimate both the source locations (Figure 4b). We get
good estimate of the source time function at both the locations
with the proposed method, whereas linearized Bregman based
method estimates source time function at one source location
(Figure 3a). The proposed method also preserves the frequency
content of the source time function at both the source locations
as evident from the amplitude spectrum plot of source time
function at both the locations (Figure 3c & 3d). We observe
some noise in the spectrum of estimated source-time function.
This is mainly because of the cross-talk between sources within
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(a) (b)

(c) (d)

Figure 2: (a) Acquisition geometry with velocity model. In-
verted yellow colour triangles indicate receivers buried at a
depth of 20.0m & separated by 10.0m. Two black dots indi-
cate the location of two microseismic sources. (b) Microseismic
data generated by two microseismic sources activating at differ-
ent times and with dominant frequencies of 30.0Hz and 25.0Hz
respectively. Source location estimated by (c) Linearized Breg-
man and (d) L-BFGS as the outlier in the zoomed intensity plot.
Black cross indicates the true source location

half a wavelength. We can reduce this cross talk by spectral
smoothing. With velocity update, we can get further focusing
of source field at the true source location, which can further
reduce this cross talk. Velocity update is out of scope for this
paper but the comparison of results of experiment 1 with true
velocity and experiment 2 with smooth velocity is encouraging.

CONCLUSIONS

We have proposed a method to jointly estimate closely spaced
microseismic source locations and their source time function
functions. Linearized Bregman based method requires lot of
iterations for closely spaced sources. However, L-BFGS based
method can locate sources within half a wavelength along with
their source time function in lesser iterations. The L-BFGS
based method works with dual variable which is cheaper to
store. Therefore, we can store dual variable updates without
any addition memory storage burden to get better L-BFGS
convergence. We have extended our method in 2.5D. Lastly,
we can estimate location and source time function of more than
one sources without any assumptions on number of sources.
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Figure 3: Comparison of the true wavelet (solid green) with
wavelets estimated by Linearized Bregman based method (solid
blue) and L-BFGS based method (solid magenta) using true
velocity and wavelets estimated by Linearized Bregman based
method (dashed blue) and L-BFGS based method (dashed
magenta) using smooth velocity at (a) source 1 located at
(1.625km , 0.73km) and (b) source 2 located at (1.665km ,
0.72km). Comparison of spectrum of true wavelet (solid green)
with spectrum of wavelets estimated by Linearized Bregman
based method (solid blue) and L-BFGS based method (solid
magenta) using true velocity and spectrum of wavelets esti-
mated by Linearized Bregman based method (dashed blue) and
L-BFGS based method (dashed magenta) using smooth velocity
at (c) source 1 located at (1.625km , 0.73km) and (d) source 2
located at (1.665km , 0.72km)

(a) (b)

Figure 4: Source location estimated by (a) Linearized Bregman
and (b) L-BFGS as the outlier in zoomed intensity plot.Black
cross indicates the true source location
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