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SUMMARY

Often in exploration Geophysics we are forced to work with
extremely large problems. Acquisitions via dense grids of re-
ceivers translate into very large mathematical systems. Usually,
depending on the acquisition, the size of the matrix of the sys-
tem to be solved, can be measured in the millions. The proper
way to address this problem is by subsampling. Even though
subsampling can reduce the computational efforts required, it
can not address stability problems caused by preconditioning
and/or instrumental response errors. In this abstract, we intro-
duce a modification of the linearized Bregman solver for these
large problems that resolves stability issues.

INTRODUCTION

The generalized mathematical formulation in many geophysical
applications can be summarized by the following optimization
problem:

min
x∈Rn

F(x) s.t. Ax = b, (1)

where F(x) is a convex function, A represents a modeling oper-
ator, and b is the acquisition data, organized in a very specific
way. The problem ( 1 ) becomes extremely large and eventually
we have to subsample (Lorenz et al., 2014, , Herrmann et al.
(2015)) in order to make the problem computationally feasible.

Reducing the computational cost is very important and desired.
A very fast, simple and efficient method for the the problem
( 1 ) is the linearized Bregman (Lorenz et al., 2014, ), which is
described as :

zk+1 = zk− tkAT
k (Akxk−bk)

xk+1 = Sλ (zk+1),
(2)

where Sλ (zk+1) = sign(zk+1)max{0, |zk+1| − λ}, tk =
||Akxk−b||22
||AT

k (Akxk−b)||22
called the “dynamic time-step”, the index k

denotes a subsampling of the operator A and b is the data. The
convergence of linearized Bregman is proven in the case where
Ax = b, corresponding to 1 as a consistent problem.

In practice, since the data are subject to several preprocessing
steps, it is typical that b = Ax+w, where w is the effect of the
preprocessing. This makes the problem inconsistent and it is not
guaranteed that the linearized Bregman method will converge
to the exact solution. More precisely the linearized Bregman
method will exhibit unstable behavior, no longer converging to
an exact solution but instead alternating between (approximate)
feasible solutions. In Figure 1 we demonstrate this unstable
behavior by following a single entry of the linearized Bregman
solution of a toy problem. We observe that the solution of
the Bregman method, after iteration 8, cycles around the exact
value for the Ax = b and stops converging to a single solution.
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Figure 1: Here we plot the largest entry of a toy problem. With
red we plot the exact value, with blue we plot the linearized
Bregman solution and with green we plot the linearized Breg-
man with the proposed weighted increment.

In this abstract we show that the intensity of this cycling be-
haviour increases with the size of the system. We have associ-
ated the intensity of this behavior with the dynamic time step tk
used for improving the convergence rate in the linearized Breg-
man method. We propose a weighted increment, which allows
the linearized Bregman to converge to a feasible solution.

We provide an example of LS migration problems that translates
into an optimization problem of the form ( 1 ) . We discuss
the advantages of the proposed modification of the linearized
Bregman method.

LINEARIZED BREGMAN WITH WEIGHTED INCRE-
MENT

Solving a highly overdetermined, inconsistent system with lin-
earized Bregman, introduces many challenges as demonstrated
in Figure 1 . These challenges are driven by the combination
of the form of the dynamic time step tk in the method and from
the tendency of the linearized Bregman method to overfit the
noise in the data. Further contributing to these difficulties, in
LS migration problems (Herrmann et al., 2008, ) we have to
invert a highly overdetermined problem and the inconsistency
comes from several preprocessing step for the data.

To avoid overfitting the noise, we propose a small but very
effective modification of the linearized Bregman algorithm :

zk+1 = zk− τk�AT
k (Akxk−bk)

xk+1 = Sλ (zk+1),
(3)

where � denotes element wise multiplication. We introduce a



weight factor in the incrementand given by

τ
i
k = tk

|
k∑

j=1
sign

(
[AT

j (A jx j−b j)]i
)
|

k
. (4)

The increment of the linearized Bregman in ( 3 ) allows us
to adapt the increment independently for every entry of the
solution vector and we can reduce the increment to values close
to zero whenever an entry is close to the desired value. The
weighted increment can drastically reduce the model error of
the method.

A RELATED CHALLENGE IN GEOPHYSICS

The LS migration problem ( 5 ) translates into an inverse prob-
lem equivalent to the problem ( 1 ).

min
x
||x||1 s.t.

ns∑
i=1

||Ji[m0,qi]C∗x−bi||2 ≤ σ . (5)

Here x is a vector of the Curvelet coefficients, Ji is the Born
modelling operator for the ith shot, m0 is the background model
for the velocity, qi is the source wavelet for the ith shot, bi is
the vectorized reflection for ith shot, C∗ is the transpose of the
Curvelet transform and σ is the noise tolerance or modeling
error.

The role of the matrix A in the problem 1 is performed by the
operator Ji[m0,qi]C∗. The Curvelet coefficients of the vector x
decay exponentially, meaning that just a few coefficients have
large value and the vast majority of them are very small. This
makes the vector x compressible.

THE EFFECTIVENESS OF THE WEIGHTED INCRE-
MENT

The effectiveness of the proposed weighted increment is demon-
strated by the following experiment. To keep the experiment
closely related to the LS migration problem, the objective is
to recover a vector of Curvelet coefficients. The matrix A is a
tall 10000000×2040739 operator, which will replace the cor-
responding modelling operator of the LS migration problem.
The data is generated by applying a known operator A to a
known vector of Curvelet coefficients. Finally, to simulate the
inconsistency of the problem, we add noise to the data.

We solve ( 1 ) using the linearized Bregman method and then
again using the proposed modification using the weighted in-
crement. In every iteration we are solving an underdetermined
problem by using a submatrix Ak, which contains 500000 ran-
domly selected rows of A as illustrated by the schematic of
Figure 2 .

In Figure 3 we show the relative model error for the first 150
iterations for both methods. The model error of the linearized
Bregman stagnates at about 5%, while the model error using the
weighted increment method drops to about 3% and continues
to decrease with more iterations..

Figure 2: This schematic explains the subsampling process.
In every iteration k we randomly select rows of the matrix A
and the corresponding entries of the data of the vector b. The
subproblem of every iteration is an underdetermined problem.

The error difference between the original linearized Bregman
and the modified method using the weighted increment is re-
lated to the unstable behaviour with cycling that we demon-
strated in Figure 1 . It is this cycling behavior in the standard
linearized Bregman method that is directly responsible for the
stagnation of the model error at a large value.
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Figure 3: In this plot we plot the model error for the original
linearized Bregman (in blue) and the linearized Bregman with
the proposed modification (in red) for the small scale problem.

CHALLENGES IN LARGE SCALE PROBLEMS

The explorational Geophysic community is forced by the na-
ture of their problems to implement any specific methodology
on a large scale (from 2D to 3D or extented acquisitions, etc).
However solving an optimization problem, such as the prob-
lem 1, becomes exceptionally challenging in large scale. As
already demonstrated above, the original linearized Bregman
model given in ( 2 ) , fails to converge to a feasible solution.
Within a large scale problem, this difficulty is magnified, since
the increased computational costs usually implies fewer passes
through the data, or a smaller number of iterations.

We replicate a large scale problem, by recovering a
known Curvelet coefficient vector, with A to be a
100000000 × 2040739, taking the SNR for the large
scale problem to be the same as the small scale problem. The



configuration of the linearized Bregman method remains the
same as the small scale problem so the only difference is the
scale.

In Figure 4 we see that the relative model error for the original
linearized Bregman method stagnates again, this time at about
14%. The proposed weighted increment linearized Bregman
method is performing much better, since the error does not
stagnate and continues to decrease throughout th 150 iterations.
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Figure 4: In this plot we plot the model error for the original
linearized Bregman (in blue) and the linearized Bregman with
the weighted increment modification (in red) for the small large
problem.

For the original linearized Bregman method, the model error
stagnates at different levels for the small and the large scale
problems. The SNR of the data is the same for both prob-
lems, but the size of the data vector is 10 times bigger for the
large scale problem. This essentially means that the `2-norm
of the residual is much bigger for the large scale problem. The
`2-norm of the residual is a controlling factor for the unsta-
ble cycling behavior demonstrated in Figure 1 and thus the
difference in the stagnation level.

As we solve larger and larger problems, the stagnation at a
larger model error limits the size of the problem for which a
solution can be recovered with acceptable error.

We can remove this limitation with the proposed weighted time-
step of equation 4 . Using the weighted increment we are only
limited by the number of iterations we can afford to do.

APPLICATIONS IN GEOPHYSICS AND FUTURE
WORK

We already have implemented the proposed weighted time-
step for 2D least-square migration problems with the result
showing how it provides significant improvements in the model
error, relative to the original linearized Bregman (see Figure 5
). While the results so far are impressive, the most promising
aspect of the proposed methodology is the stability which is
conserved for large scale problems.

Future work includes the impementation of 3D LS migration
in time domain. In future work we also include LS migration
using ambient noise data instead of shot gathers.
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Figure 5: Least-square migration results using the original lin-
earized Bregman methed and then with the proposed weighted
increment modification.

CONCLUSIONS

The linearized Bregman solver for inconsistent problems lacks
stability, failing to converge to a feasible solution. Furthermore,
the overwhelming size of the large scale problems produces
additional errors. In this abstract we propose a relatively simple
modification to the linearized Bregman solver, which allows
us to resolve these problems and preserve the results for large
scale problems.
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