Reconstruction of S-waves from low-cost randomized and simultaneous acquisition by joint sparse inversion

Ali M. Alfaraj, Rajiv Kumar, Felix J. Herrmann

SEG Houston

September 26, 2017
Outline

- Advantages of S-waves
- Why S-wave is not commonly used in practice?
- Elastic decomposition
- Jittered undersampling
- Single component reconstruction
- Various joint reconstruction formulations w/ sparsity promotion
- Conclusions
Advantages of S-waves

• Imaging through gas chimneys
Advantages of S-waves

- Imaging through gas chimneys
- High resolution imaging (thin layers)
Advantages of S-waves

- Imaging through gas chimneys
- High resolution imaging (thin layers)
- Reservoir detection & monitoring
Advantages of S-waves

• Imaging through gas chimneys
• High resolution imaging (thin layers)
• Reservoir detection & monitoring
• Elastic rock properties
Advantages of S-waves

- Imaging through gas chimneys
- High resolution imaging (thin layers)
- Reservoir detection & monitoring
- Elastic rock properties
- Improve accuracy & confidence
Why S-wave is not commonly used in practice?
Why S-wave is not commonly used in practice?
Why S-wave is not commonly used in practice?

Low S-wave velocity
Why S-wave is not commonly used in practice?

Low S-wave velocity

Nyquist criterion
Why S-wave is not commonly used in practice?

- Low S-wave velocity
- Nyquist criterion
- Denser sampling
- Higher acquisition costs
Why S-wave is not commonly used in practice?

Low S-wave velocity

- Nyquist criterion
- Denser sampling
- Higher acquisition costs

Solution
Why S-wave is not commonly used in practice?

- Low S-wave velocity
- Higher acquisition costs
- Denser sampling
- Nyquist criterion

Solution: Compressive sensing
Why S-wave is not commonly used in practice?

Low S-wave velocity

- Nyquist criterion
- Denser sampling
- Higher acquisition costs

Solution

- Compressive sensing
- Randomized undersampling
- Lower acquisition costs
Ocean bottom acquisition

\[\phi^+ \]
Ocean bottom acquisition
Wavefield decomposition
Elastic wavefield decomposition

\[d = Nq \]
Elastic wavefield decomposition

\[d = Nq \]

\[\begin{pmatrix} \phi^+ \\ \psi^+_y \\ \phi^- \\ \psi^-_y \end{pmatrix} = \begin{pmatrix} N_1^+ & N_2^+ \\ N_1^- & N_2^- \end{pmatrix} \begin{pmatrix} -\tau_{xz} \\ -\tau_{zz} \\ v_x \\ v_z \end{pmatrix} \]
Elastic wavefield decomposition

\[\mathbf{d} = \mathbf{Nq} \]

\[
\begin{pmatrix}
\phi^+ \\
\psi^+_y \\
\phi^- \\
\psi^-_y
\end{pmatrix}
= \begin{pmatrix}
N_1^+ & N_2^+ \\
N_1^- & N_2^-
\end{pmatrix}
\begin{pmatrix}
-\tau_{xz} \\
-\tau_{zz} \\
v_x \\
v_z
\end{pmatrix}
\]

At the ocean bottom:

\[\tau_{xz} = 0 \quad \tau_{zz} = -p \]
Elastic wavefield composition

\[q = Ld \]

\[
\begin{pmatrix}
-\tau_{xz} \\
-\tau_{zz} \\
v_x \\
v_z
\end{pmatrix} = \begin{pmatrix}
L_1^+ & L_1^- \\
L_2^+ & L_2^-
\end{pmatrix} \begin{pmatrix}
\phi^+ \\
\psi^+_y \\
\phi^- \\
\psi^-_y
\end{pmatrix}
\]
Multicomponent data

P, V_x, V_z
Elastic decomposition

\[\Psi^+ \]

\[\Psi^- \]
Can’t afford dense acquisition
40 m source interval receiver gathers

- P
- V_x
- V_z
f-k spectrum, 40 m source interval
Decomposed S-waves
f-k spectrum, 40 m source interval
Can’t afford dense acquisition
Jittered under-sampled acquisition

Jittered under-sampled acquisition

Jittered under-sampled acquisition

Gaps

single component reconstruction w/ sparsity promotion
Single component reconstruction

(1) Interpolation
Single component reconstruction

(1) Interpolation

(2) Decomposition
Single component reconstruction w/ sparsity promotion

$$\min_{x} \|x\|_1 \text{ subject to } \|Ax - b\|_2 \leq \sigma \quad \text{(BPDN}_\sigma\text{)}$$

x: curvelet coefficients

$$A = MS^H$$
75% jittered subsampling

Observation example
f-k spectrum, 75% jittered subsampling
Reconstructed S-waves

Ψ^+

Ψ^-

offset [m]

time [s]
Densely sampled S-waves
Residual

\[\Psi^+ \]

\[\Psi^- \]
f-k spectrum, reconstructed S-waves
f-k spectrum, true S-waves
Marmousi II data

\(\rho \)

\(C_p \)

\(C_s \)
Densely sampled data

\(V_x \)

\(V_z \)

\(T_{zz} \)
75% jittered subsampling
Reconstructed data
Densely sampled data
Residual

Φ^-

Φ^+

Ψ^-

Ψ^+
Joint interpolation decomposition
Joint interpolation decomposition

(1) Interpolation

(2) Decomposition

\[P \xrightarrow{V_x} V_z \]

\[P \xrightarrow{V_x} V_z \]

\[\Psi^+ \quad \Psi^- \]
Joint interpolation decomposition

(1) Interpolation

(2) Decomposition

\[P \rightarrow V_x \rightarrow V_z \]

\[P \rightarrow V_x \rightarrow V_z \rightarrow \Psi^+ \rightarrow \Psi^- \]
Joint interpolation decomposition w\ curvelets

\[
\min_x \|x\|_1 \quad \text{subject to} \quad \|Ax - b\|_2 \leq \sigma \quad \text{(BPDN}_\sigma) \\
\]

\(x\): coefficients of the decomposed data

Sparsifying transform:

\[A_c = MF^H LFS^H\]
75% jittered subsampling

- **P**
- **V_x**
- **V_z**
Joint interpolation decomposition in the curvelet domain

\[\Psi^+ \]

\[\Psi^- \]
Densely sampled S-waves
Residual

\[\Psi^+\]

\[\Psi^-\]
Marmousi II Densely sampled data

\[V_x \]

\[V_z \]

\[T_{zz} \]
75% jittered subsampling

V_x

V_z

T_{zz}
Reconstructed data
Densely data
Residual

\[\Phi^+ \]

\[\Phi^- \]

\[\Psi^+ \]

\[\Psi^- \]
Joint interpolation decomposition in the f-k domain
Joint interpolation decomposition, f-k

\[
\min_x ||x||_1 \text{ subject to } ||Ax - b||_2 \leq \sigma \quad \text{(BPDN}_\sigma) \\
\]

\(\mathbf{x}\): coefficients of the decomposed data

Sparsifying transform:

\[
\mathbf{A}_c = \mathbf{MF}^H \mathbf{LFS}^H
\]
Joint interpolation decomposition, f-k

$$\min_{\mathbf{x}} \|\mathbf{x}\|_1 \quad \text{subject to} \quad \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2 \leq \sigma \quad \text{(BPDN}_\sigma)$$

\(\mathbf{x}\): coefficients of the decomposed data

Sparsifying transform:

$$\mathbf{A}_c = \mathbf{MF}^H \mathbf{LFS}^H$$

$$\mathbf{A}_{fk} = \mathbf{MF}^H \mathbf{L}$$
Reconstructed data, f-k
Reconstructed data, curvelet
Residual

\(\Phi^- \)

\(\Phi^+ \)

\(\Psi^- \)

\(\Psi^+ \)
Why curvelets are better?

- Better at capturing curve-like events.
Why curvelets are better?

- Better at capturing curve-like events.
- Sparser representation.

![Coefficients of decomposed data](image)
Joint source separation decomposition
Jittered continuous recording, 1 boat, 2 air guns
Joint source separation decomposition

$$\min_{\mathbf{x}} \|\mathbf{x}\|_1 \quad \text{subject to} \quad \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2 \leq \sigma \quad (\text{BPDN}_\sigma)$$

\(\mathbf{x}\): curvelet coefficients of the decomposed data

\(\mathbf{A}_c = \mathbf{M}\mathbf{F}^H\mathbf{L}\mathbf{F}\mathbf{S}^H\)

\(\mathbf{M}\): blending matrix
Reconstructed data
Densely data
Advantages of the joint formulations

- Use all the multicomponent data in one optimization problem.
Advantages of the joint formulations

- Use all the multicomponent data in one optimization problem.
- Avoid multi stage processing & artifacts.
Advantages of the joint formulations

- Use all the multicomponent data in one optimization problem.
- Avoid multi stage processing & artifacts.
- Minimize parameters selection.
Advantages of the joint formulations

- Use all the multicomponent data in one optimization problem.
- Avoid multi stage processing & artifacts.
- Minimize parameters selection.
- Ensure preservation of amplitude ratios.
Conclusions

- Acquisition of S-waves is prohibitively expensive with conventional dense acquisition designs.
Conclusions

- Acquisition of S-waves is prohibitively expensive with conventional dense acquisition designs.
- Coarse regular sampling results in aliasing of the S-waves.
Conclusions

- Acquisition of S-waves is prohibitively **expensive** w/ conventional dense acquisition designs.
- **Coarse regular** sampling results in **aliasing** of the S-waves.
- Using low-cost **jittered under-sampling & simultaneous acquisition w/ joint interpolation source separation decomposition**, S-waves become feasible to acquire & utilize in practice.
Conclusions

- Acquisition of S-waves is prohibitively expensive with conventional dense acquisition designs.
- Coarse regular sampling results in aliasing of the S-waves.
- Using low-cost jittered under-sampling & simultaneous acquisition with joint interpolation source separation decomposition, S-waves become feasible to acquire & utilize in practice.
- Utilize the multicomponent data to its available full extent at a lower cost compared with conventional acquisition.
References

Acknowledgements

I extend my gratitude to Saudi Aramco for sponsoring my Ph.D. studies at the University of British Columbia.

This research was carried out as part of the SINBAD project with the support of the member organizations of the SINBAD Consortium.

Thank you for your attention!