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SUMMARY

Spatial Nyquist sampling rate, which is proportional to the
apparent subsurface velocity, is the key deciding cost factor
for conventional seismic acquisition. Due to the lower shear
wave velocity compared with compressional waves, finer spa-
tial sampling is required to properly record the earlier, which
increases the acquisition costs. This is one of the reasons why
shear waves are usually not considered in practice. To avoid
having the Nyquist criterion as the deciding cost factor and to
utilize multicomponent data to its available full extent, we pro-
pose acquiring randomly undersampled ocean bottom seismic
data. Each component can then be interpolated separately, fol-
lowed by elastic decomposition to recover up- and down-going
S-waves. Instead, we jointly interpolate and decompose the
recorded multicomponent data by solving one sparsity promot-
ing optimization problem. This way we ensure that the relative
amplitudes of the multicomponent data is preserved. We com-
pare two sparsifying transforms: the curvelet transform and
the frequency-wavenumber transform. Another key cost decid-
ing factor for seismic acquisition is the efficiency of acquiring
data. This calls for simultaneous acquisition, which requires a
source separation step. Similarly, instead of taking a two-step
approach, we perform a sparsity-promoting joint source sepa-
ration decomposition. Results on economically and efficiently
acquired synthetic data of both joint methods show their ability
of reconstructing accurate up- and down-going S-waves.

INTRODUCTION

Multicomponent ocean bottom seismic data carries valuable
shear (S-wave) information that enables numerous applications
such as imaging through a gas cloud and high resolution shal-
low subsurface imaging (Stewart et al., 2003). In order to obtain
pure up- and down-going compressional (P-waves) and S-waves
from recorded multicomponent data, we need to perform elastic
wavefield decomposition just below the ocean bottom (Wape-
naar and Berkhout, 2014). However, the velocity of the S-waves
are much slower than that of with P-waves, which makes the
earlier aliased when recorded with conventional acquisition
designs targeted towards acoustic imaging. To avoid aliasing
by satisfying the Nyquist sampling criterion, which requires the
spatial sampling to be proportional to the apparent subsurface
velocity, and to use the multicomponent data to its full available
extent, denser source and/or receiver sampling is required. This
leads to prohibitively high acquisition costs, which limits the
use of S-waves. On the other hand, we can avoid aliasing of
the S-waves without increasing the acquisition costs by uti-
lizing ideas from the field of compressive sensing (Donoho,
2006; Candès and Wakin, 2008; Hennenfent and Herrmann,
2008). Instead of dense sampling, we propose acquiring data in
a randomly undersampled fashion. The data can then be inter-

polated from a coarse grid into a uniform fine grid. There exist
different interpolation methods that use the properties of vari-
ous transforms. These include the Fourier transform (Zwartjes
and Sacchi, 2007), curvelet transform (Hennenfent and Her-
rmann, 2006, 2008), Radon transform (Trad et al., 2002,Kabir
and Verschuur (1995)), and frequency-wavenumber transform
(Stanton and Sacchi, 2013). In our recent publication (Alfaraj
et al., 2017), we have interpolated each component of randomly
subsampled multicomponent ocean bottom seismic data inde-
pendently and then decomposed the interpolated components
into up- and down-going S-waves. In this work, we move from
a two-step to a one-step approach so that we can handle all the
multicomponent data in one optimization scheme and preserve
their relative amplitudes. We jointly interpolate and decompose
the multicomponent data by solving one sparsity-promoting op-
timization problem where the input is the randomly subsampled
multicomponent data and the desired outputs are the densely
sampled up- and down-going S-waves. We formulate the prob-
lem using sparsity promotion in two domains: the curvelet
domain and the frequency-wavenumber domain. Another im-
portant acquisition key factor is the overall acquisition time. By
acquiring seismic data with simultaneous sources, larger areas
can be covered in shorter acquisition times (Beasley, 2008).
Wason and Herrmann (2013) have shown that data can be de-
blended with sparsity promotion in the curvelet domain. Since
our final goal is to reconstruct up- and down-going S-waves,
we implement the source separation and decomposition in a
one-step approach by solving a sparsity promoting joint source
separation decomposition.

This paper is organized as follows. We first explain the theory
of elastic wavefield decomposition and wavefield composition,
followed by explanation of the theory of sparsity promoting
joint interpolation decomposition and joint source separation
decomposition. Next we demonstrate our proposed schemes on
synthetic elastic finite-difference data.

ELASTIC WAVEFIELD DECOMPOSITION

The measured multicomponent two-way wavefields q can be
decomposed into one-way wavefields d using a decomposition
matrix N in the frequency-wavenumber (f-k) domain as follows:

d = Nq. (1)

The two-way wavefields can also be composed from one-way
wavefields using a composition matrix L:

q = Ld. (2)

For the elastic case, the one-way wavefields contain the P-wave
potential φ and the S-wave potential ψ , while the two-way
wavefields contain the traction τ and the particle velocity v. We
consider waves polarized in the horizontal-vertical (x−z) plane,
neglect SH waves and only consider P-SV waves. The decom-
posed potentials in the f-k domain for two-dimensional media



can be obtained by (Wapenaar and Berkhout, 2014; Wapenaar
et al., 1990):
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where τxz and τzz represent the shear and normal tractions, vx
and vz are the horizontal and vertical particle velocity compo-
nents, the superscripts − and + indicate up- and down-going
wavefields, respectively. At the ocean bottom, the shear traction
vanishes, while the normal traction equals the negative of the
acoustic pressure, (Aki and Richards, 2002). We assume we
know the ocean floor properties required for composing and de-
composing the wavefields. Schalkwijk et al. (2003) showed that
these properties can be be estimated with an adaptive wavefield
decomposition scheme while Alfaraj et al. (2015) showed that
they can be estimated with wavefield tomography. From alias-
free measurements at the ocean bottom, we can now obtain
the up- and down-going P- and S-waves. We can also obtain
the two-way wavefields by composing the up- and down-going
one-way wavefields. However, when the multicomponent data
is acquired with not fine enough spatial sampling, the S-waves
become aliased and impractical to use.

JOINT-INTERPOLATION DECOMPOSITION

The Nyquist sampling criterion imposes prohibitively high ac-
quisition costs when acquiring finely sampled multicomponent
data specifically targeted towards S-waves. In order to be able
to use the valuable information the S-waves have to offer with-
out increasing the acquisition costs, we utilize ideas from the
field of compressive sensing by placing sources and/or receivers
on a randomly subsampled grid. With such sampling, aliasing
is turned into incoherent noise in a transform domain which
enables us to formulate the interpolation problem as a denoising
problem (Hennenfent and Herrmann, 2006, 2008; Herrmann
et al., 2012). Given randomly subsampled multicomponent
data (p,vz,vx) represented by b ∈ Rn, we wish to reconstruct
the fully sampled up- and down-going P- and S-waves repre-
sented by f ∈ RN , where n� N. We assume that the data has a
sparse representation x ∈ CP given by the transform operator
S ∈ CP×N , where P ≥ N. The subsampled multicomponent
data b is related to the transform domain coefficients x and the
reconstructed data f by the matrix A ∈ Cn×P, and the subsam-
pling matrix R ∈ Rn×P, respectively:

Ax = Rf = b. (5)

When using the frequency-wavenumber transform as the sparsi-
fying transform, A is defined as follows:

A f k = RFHL, (6)

where L ∈ CP×P is the composition operator, F ∈ CP×P is
the 2D Fourier transform and the superscript H denotes the

Hermitian transpose. When using the curvelet transform as the
sparsifying transform, A becomes:

Ac = RFHLFCH , (7)

where C ∈ CP×N is the curvelet transform operator. To recon-
struct the up- and down-going P- and S-waves directly, we solve
the following convex optimization problem:

min
x∈CP
‖x‖1 subject to ‖Ax−b‖2 ≤ σ (8)

using the SPG`1 solver (Berg and Friedlander, 2008). The pa-
rameter σ is the noise level and ‖x‖1 is the sum of the absolute
values of the elements of x. Since we input all the subsam-
pled multicomponent data in one optimization problem, we
benefit from not having to solve and tune separate optimiza-
tions problem for each component. When interpolating each
component separately, the outcome may not honor the relative
amplitude values between the components. Therefore, ampli-
tudes of each component as well as the noise effect have to be
studied carefully before and after reconstruction. While in the
joint-interpolation decomposition case, the information from
each component is weighted by multiplication with appropri-
ate factors in the composition operator, which ensures having
correct decomposition results.

JOINT-SOURCE SEPARATION DECOMPOSITION

Simultaneous source acquisition aims at reducing the acqui-
sition time by covering larger areas in shorter times. Instead
of separately deblending each component of the data and then
retrieving the up- and down-going P- and S-waves, we propose
performing these two steps jointly by solving a sparsity pro-
moting joint source separation decomposition problem. We
follow the same approach as in the previous section, but rather
than randomly subsampling the data, we apply a Gaussian in-
dependent and identically distributed (i.i.d.) random matrix to
each component of the data to mitigate a blended acquisition
scenario. We should note that this measurement matrix is more
appropriate for land acquisition where we can have multiple
vibrators firing at random times with different phase encodings,
which is not feasible for marine acquisition up to now. We solve
the same basis of pursuit denoising problem, equation 8, where
our observed data b becomes the simultaneously acquired mul-
ticomponent data and our outputs of interest are the deblended
up- and down-going S-waves.

NUMERICAL RESULTS AND DISCUSSION

We demonstrate the performance of our proposed schemes on
200 shots and 200 multicomponent receivers modeled using
a 2D elastic finite-difference modeling code (Thorbecke and
Draganov, 2011), figure 1. The source and receiver intervals
are 10 m and the maximum frequency of the data is 60 Hz.
Figure 3 shows the decomposition results of the dense data. We
randomly subsample each component by removing 75% of the
data, where the largest and smallest gaps are 200 m and 10
m respectively, figure 2. We then perform sparsity promoting
joint interpolation decomposition to directly reconstruct the
up- and down-going P- and S-waves, figure 4. The results
obtained by using Ac that corresponds to the curvelet domain
are much better compared with the results obtained with A f k,
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Figure 1: Synthetic multicomponent ocean bottom data: (a) Vx,
(b) Vz, (c) P.

which corresponds to the frequency-wavenumber domain. The
latter has more noise, which we attribute to the fact that curvelet
coefficients are capable of capturing the variations of seismic
data and providing a sparser representation than the frequency-
wavenumber coefficients. Even though the formulation of Ac
seems computationally expensive, it only requires 20 iterations
to converge to the results. Since the composition operator is
applied in the frequency-wavenumber domain, we have also
studied the performance of the algorithm when we change Ac
to

Ac2 = LFRCH , (9)

and formulate our observed data b to be in the frequency-
wavenumber domain. This reduces the computation cost since
we end up with only one frequency-wavenumber transform in
Ac2. However, the results get degraded since we are applying
the subsampling operator directly on the one-way decomposed
data, which in reality is not the case. What is being subsampled
in the field are the multicomponent measurements. Therefore
using the subsampled decomposed wavefields to form the two-
way wavefields results in artifacts that distorts the quality of
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Figure 2: Randomly subsampled multicomponent ocean bottom
data with 75% missing traces: (a) Vx, (b) Vz, (c) P.

(a) (b)

Figure 3: Down- and up-going S-waves decomposed from the
fully sampled data with 10m spacing: (a) Ψ+, (b) Ψ−.
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Figure 4: Joint interpolation decomposition with sparsity pro-
motion in the curvelet domain: (a) Ψ+, (b) Ψ− and sparsity
promotion in the frequency-waveneumber domain (c) Ψ+, (d)
Ψ−.

the recovery. For the simultaneous sources experiment, we
implement the sparsity-promoting joint source separation in-
terpolation on the fully sampled dataset to recover the up- and
down-going S-waves, figure 5. We observe similar results to the
joint interpolation decomposition where the curvelet domain
formulation performs better than the frequency wave-number
domain formulation.

We have demonstrated that we are able to recover reason-
ably accurate up- and down-going S-waves from (i) 75% ran-
domly missing multicomponent data and from (ii) simultane-
ously acquired data by performing sparsity-promoting joint-
interpolation decomposition and joint-source separation de-
composition, respectively. As a result, we move away from
performing each step independently, which leads to several
benefits. We end up with an algorithm that can handle all
the multicomponent data in one go, not only to interpolate or
deblend the data, but also to provide up- and down-going P-
and S-waves. This leads to having less tuning parameters of

the optimization problem as well as less overall computation
time. Moreover, the relative amplitude values amongst the
components get preserved, which should in principle lead to
better decomposition results. This makes the joint formulations
more favorable than the multi-step formulations. Future work
should include examining the noise effect and performing P-S
migration of the decomposed data.

(a) (b)

Figure 5: Joint source separation decomposition with sparsity
promoting in the curvelet domain (a) Ψ+, (b) Ψ−.

CONCLUSIONS
S-waves are slower than P-waves, which makes them either
aliased or more expensive when acquired with conventional
acquisition designs as they require much finer spatial sampling.
We propose acquiring the S-waves by randomized undersam-
pling, which is a more economical way of acquiring the data.
Aliased energy is then turned into incoherent noise in the sparse
domain. This allows using the sparsity promotion advantages
to perform joint-interpolation decomposition where we solve
for the up- and down-going S-waves directly from randomly
subsampled multicomponent data. To reduce the acquisition
time and efficiently acquire seismic data, simultaneous source
acquisition is becoming the standard of collecting seismic data.
This requires a deblending step. Instead of taking a two-step
approach by deblending then decomposing, we jointly deblend
and decompose the multicomponent data into up- and down-
going P- and S-waves. When performing the proposed joint
schemes, we are more confident that the relative amplitudes
of the multicomponent data are preserved. Synthetic data re-
sults show that by implementing the sparsity promoting joint
source separation decomposition and joint interpolation de-
composition, we are able recover reasonably accurate up- and
down-going S-waves.
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