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SUMMARY:

Traditional reverse-time migration (RTM) gives images with
wrong amplitudes and low resolution. Least-squares RTM (LS-
RTM) on the other hand, is capable of obtaining true-amplitude
images as solutions of /;-norm minimization problems by fit-
ting the synthetic and observed reflection data. The shortcom-
ing of this approach is that solutions of these ¢, problems are
typically smoothed, tend to be overfitted, and computation-
ally too expensive because it requires compared to standard
RTM too many iterations. By working with randomized sub-
sets of data only, the computational costs of LS-RTM can be
brought down to an acceptable level while producing artifact-
free high-resolution images without overfitting the data. While
initial results of these “compressive imaging” methods were
encouraging various open issues remain including guaranteed
convergence, algorithmic complexity of the solver, and lack of
on-the-fly source estimation for LS-RTMs with wave-equation
solvers based on time-stepping. By including on-the-fly source-
time function estimation into the method of Linearized Breg-
man (LB), on which we reported before, we tackle all these
issues resulting in a easy-to-implement algorithm that offers
flexibility in the trade-off between the number of iterations
and the number of wave-equation solves per iteration for a
fixed total number of wave-equation solves. Application of
our algorithm on a 2D synthetic shows that we are able to ob-
tain high-resolution images, including accurate estimates of
the wavelet, for a single pass through the data. The produced
image, which is by virtue of the inversion deconvolved with
respect to the wavelet, is roughly of the same quality as the
image obtained given the correct source function.

INTRODUCTION

Reverse-time migration (RTM) approximates the inverse of the
linearized Born modelling operator by its adjoint. As a con-
sequence, RTM without extensive preconditioning—generally
in the form of image domain scalings and source deconvolu-
tion prior to imaging—cannot produce high-resolution true-
amplitude images. By fitting the observed reflection data in
the least-squares sense, least-squares migration, and in particu-
lar least-squares reverse-time migration (LS-RTM), overcomes
these issues except for two main drawbacks withstanding their
succesful application. Firstly, the computational cost of con-
ducting demigrations and migrations iteratively is very large.
Secondly, minimizing the ¢, norm of the data residual can
lead to model perturbations with artifacts caused by overfitting.
These are due to the fact that LS-RTM involves the inversion of
a highly overdetermined system of equations where it is easy
to overfit noise in the data.

One approach to avoid overfitting is to apply regularization
to the original formulation of LS-RTM, and search for the

sparsest possible solution by minimizing the ¢;-norm on some
sparsifying representation of the image. Motivated by the theory
of Compressive Sensing (Donoho, 2006), where sparse signals
are recovered from severe undersamplings, and considering
the huge cost of LS-RTM we turn the overdetermined imaging
problem into a underdetermined one by working with small
subsets of sources at each iteration of LS-RTM, reducing the
computational costs.

Herrmann et al. (2008) found that, as a directional frame ex-
pansion, curvelets lead to sparsity of seismic images in imag-
ing problems. This property led to the initial formulation
of curvelet-based “Compressive Imaging” (Herrmann and Li,
2012), which formed the bases of later work by Tu et al. (2013)
who included surface-related multiples and on-the-fly source es-
timation via variable projection. While this approach represents
major progress the proposed method, which involves drawing
new independent subsets of shots after solving each one-norm
constrained subproblem, fails to continue to bring down the
residual. This results in remaining subsampling related arti-
facts. In addition, the proposed method relies on a difficult
to implement one-norm solver. To overcome these challenges,
Herrmann et al. (2015) motivated by Lorenz et al. (2014) re-
laxed the one-norm objective of Basis Pursuit Denoise (Chen
et al., 2001) by an objective given by the sum of the A-weighted
{1- and ¢>-norms. This seemingly innocent change resulted in
a greatly simplified implementation that no longer relies on re-
laxing the one-norm constraint and more importantly provably
continues to make progress towards the solution irrespective of
the number of randomly selected sources participating in each
iteration.

Inspired by this work, we propose to extend our earlier work
in frequency domain to the time domain, which is more appro-
priate for large scale 3D problems and to include on-the-fly
source estimation via variable projection. Both generalizations
are completely new and challenging because the estimation of
the time-signature of the source wavelet no longer involves es-
timating a single complex number for each temporal frequency
(Tu et al., 2013).

Our paper is organized as follows. First, we formulate sparsity-
promoting LS-RTM as a Basis Pursuit Denoising problem for-
mulated in the curvelet domain. Next, we relax the /;-norm
and describe the relative simple iterative algorithm that solves
this optimization with the mixed ¢;- ¢»-norm objective. We
conclude this theory section by including estimation of the
source-time signature that calls for additional regularization
prevent overfitting of the wavelet. We evaluate the performance
of the proposed method on the synthetic SIGSBEE2A model
(Paffenholz et al., 2002) where we compare our inversion re-
sults to LS-RTM with the true source function and standard
RTM.


http://www.delphi.tudelft.nl/SMAART/sigsbee2a.htm

Time-domain sparsity-promoting LSRTM with source estimation

THEORY

Imaging with linearized Bregman

The original sparsity-promoting LS-RTM has the same form,
albeit it is overdetermined rather than underdetermined, as
Basis Pursuit Denoise (BPDN, Chen et al. (2001)), which is
expressed as below

min [x]

subjectto > | VF;(mo,q,)C"x— o <o,

l

where the vector x contains the sparse curvelet coefficients
of the unknown model perturbation. The symbols || -||; and
|| - || denote ¢; and £, norms, respectively. The matrix C7 is
the transpose of curvelet transform C. The vectors mg stands
for the background velocity model and g; = g;(¢) is the time
dependent source function for the i shot. The matrix VF; and
vector dd; represent the linearized Born modelling operator
and observed reflection data along the receivers for the '’ shot.
The ), runs over all shots. The parameter o is the noise level
of the data.

Despite the success of BPDN in Compressive Sensing, where
matrix-vector multiplies are generally cheap, solving Equa-
tion 1 in the seismic setting where the evaluation of the VF;’s
involve wave-equation solves is a major challenge because it
is computationally infeasible. To overcome this computational
challenge, Herrmann and Li (2012) proposed, motivated by
ideas from stochastic gradients, to select subsets of shots by
replacing the sum over i = 1- - - ng, with ny the number of shots,
to a sum over randomly selected index sets .# € [1---n,] of
size n}, < n,. By redrawing these subsets at certain points of
the /1-norm minimization, Li et al. (2012) and Tu et al. (2013)
were able to greatly reduce the computational costs but at the
expense of giving up convergence when the residual becomes
small.

For underdetermined problems, Cai et al. (2009) presented
a theoretical analysis that proves convergence of a slightly
modified problem for iterations that involve arbitrary subsets
of rows (= subsets .#). Herrmann et al. (2015) adapted this
idea to the seismic problem and early results suggest that the
work of Cai et al. (2009) can be extended to the overdetermined
(seismic) case. With this assumption, we propose to replace the
optimization problem in Equation 1 by

. 1

min 2x]}s + 3

@)
subject to Z | VF;(mg,q;)CTx — 8d;| < o.
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Mixed objectives of the above type are known as elastic nets

in machine learning and for A — co—which in practice means

A large enough—solutions of these modified problems con-

verge to the solution of Equation 1. While adding the /,-term

may seem an innocent change, it completely changes the iter-

ations of sparsity-promoting algorithms including the role of

thresholding (See Herrmann et al. (2015) for more discussion).

Pseudo code illustrating the iterations to solve Equation 2 are
summarized in Algorithm 1.

Algorithm 1 Linearized Bregman for LS-RTM
1. Initialize xg = 0, 2y = 0, g, A, batchsize n, < n
2.for k=0,1,---
3. Randomly choose shot subsets . € [1---ny], |.Z| = n
4. Ap={VFi(mg,¢;)C" }icsr
5. b ={8di}ics
6
7

Lk = 2k — kA] Po(Agx —by)
Xy 1 = S (Zer1)
8. end
note: Sy (zx+1) = sign(zy 1) max{0, |zz 1| — 2}
P (A —bye) = max{0, 1 — g - (Agxge —by)

In Algorithm 1, #; = [|Agx — bg|[?/||AT (Agx; —by)||? is the
dynamic stepsize and Sy (z) is the soft thresholding operator
(Lorenz et al., 2014), and £ projects the residual onto a
{>-norm ball given by the size of the noise o. To avoid too
many iterations, the threshold A, which has nothing to do with
the noise level but with the relative importance of the ¢; and
£»-norm objectives, should be small enough, usually set pro-
portional to the level of the maximum of z; to let entries of z;
enter into the solution.

On-the-fly source estimation

Algorithm 1 requires knowledge of the source-time signatures
gi to be successfully employed. Unfortunately, this informa-
tion is typically not available. Following our earlier work on
source estimation in time-harmonic imaging and full-waveform
inversion (Tu and Herrmann, 2015; van Leeuwen et al., 2011),
we propose an approach where after each model update, we
estimate the source-time function by solving a least-squares
problem that matches predicted and observed data.

For the source estimation, we assume that we have some initial
guess go = qo(t) for the source, which convolved with a filter
w = w(t) gives the true source function g.

. 1
min A|}x][s +§HXH2
©)
subject to » _ [ VF;(mg,wgo)C"x — 8djf| < o,

l

where * stands for convolution along time. The filter w is un-
known, and needs to be estimated in every Bregman step by
solving an additional least-squares subproblem. Generally, esti-
mating w requires numerous recomputations of the linearized
data. This can be avoided by assuming that the linearized data
for the current estimated of w is given by modelling the data
with the initial source gy and convolving with the filter w af-
terwards: VF;(mg, w*qo) = w= VF;(my, qo), where the right
hand side stands for trace by trace convolution of w with the
shot gather traces.

We expect the estimated source signature to decay smoothly
to zero with few oscillations within a short duration of time.
Therefore in our subproblem, we add a penalty term ||r(w
q0)||?, where r is a weight function that penalizes non-zeros
entries at later times. In our example we choose r to be a logistic
loss function (Rosasco et al., 2004) as below. Furthermore we
add a second penalty term A; ||w * go||? to control the overall
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energy of the estimated wavelet. Our subproblem for source
estimation is then given by

min Z [[w VF;(mg, qo) — 8d;|*
1

(C))
+lr(wqo)|I* + A2 llwqo >
and the weight function r is defined as
log(1 4 ¥(—1) ifr <t
po Lol e®m) it <io )
t—log(1+e® 01y if 1 > 1.

The algorithm to solve the sparsity-promoting LS-RTM with
source estimation using linearized Bregman is summarized in
Algorithm 2.

Algorithm 2 LB for LS-RTM with source estimation
1. Initialize xog = 0, zy = 0, qg, A, Ay, batchsize n} <

ng, weights r
2.for k=0,1,---

3. Randomly choose shot subsets . € [1---ngl, |7 | =1,
4. Ap={VF;(mg,q0)C" };c s

5. br={ddi}ics

6. dk = Aka

7. wi = argming Y ||wrdy — by||* + [[r(wxqo) | +
oW qol|?
8.z =2 — 1AL (Wk*PG(Wk*dk_bk)>

9. Xpp1 =S (2k41)
10. end

In Algorithm 2, x stands for correlation, which is the adjoint
operation of convolution. Since the initial guess of x is zero,
we omit the filter estimation in the first iteration and update x
with the initial guess of the source. In the second iteration, after
the filter is estimated for the first time (line 7), z; is reset to
zero, and z; and x; are updated according to lines 8 — 9. This
prevents that the imprint of the initial (wrong) source wavelet,
pollutes the image updates of later iterations. The subproblem
in line 7 can be solved by formulating the optimality conditions
and solving for wy, directly.

NUMERICAL EXPERIMENTS

To test our algorithm, we conduct two types of experiments.
First, we test the linearized Bregman method for sparsity pro-
moting LS-RTM for the case with a known wavelet g and a
wrong wavelet gg. We then compare these results with an ex-
ample in which the source function is unknown and estimated
in the described way. For the experiments, we use the top left
part of the SIGSBEE2A model, which is 2918m by 4496m and
discretized with a grid size of 7.62m by 7.62m. The model per-
turbation, which is the difference between the true model and a
smoothed background model, is shown in Figure 1a. We gener-
ated linearized, single scattered data using the born modelling
operator. The experiment consists of 295 shot positions with 4
seconds recording time. Each shot is recorded by 295 evenly
spaced receivers at a depth of 7.62m and a receiver spacing of

15.24m, yielding a maximum offset of 4km. For later compar-
isons with the LS-RTM images, we also generate a traditional
RTM image (Figure 1b), which illustrates the wrong amplitudes
and blurred shapes at interfaces and diffraction points that are
typically associated with RTM images. Using a wrong source
wavelet in RTM enhances artifacts even more and destroys the
energy’s focusing at reflectors and diffractors, as shown in Fig-
ure 1c. The wrong wavelet is the initial guess plotted with red
line in Figure 3.

In our LS-RTM experiments, we perform 40 iterations and
in each iteration draw 8 randomly selected shots. Therefore,
after 40 iterations, approximately all shot gathers have been
used one time (~one pass through the data). To accelerate the
convergence, we apply a depth preconditioner to the model
updates, which compensates for the spherical amplitude decay
(Herrmann et al., 2008).

LS-RTM with linearized Bregman

In our first test, we perform LS-RTM via the linearized Breg-
man method using both a correct source wavelet ¢ (dashed
yellow line, Figure 3) and a wrong wavelet gg (solid red line,
Figure 3). The true source wavelet ¢ is formed by convolving a
15 Hz Ricker wavelet with the wavelet g(, which has a spectrum
with a flat shape ranging from 12 to 28 Hz and exponential ta-
pering between 0~12HZ and 28~40HZ (solid red line, Figure 3
bottom).

The only parameter that needs to be provided by the user for the
algorithm, is the weighting parameter A. In our experiments, we
determine A in the first iteration, by setting A = 0.1 * max(|z|),
which allows roughly 90 percent of the entries in z to pass
the soft thresholding in the first iteration. Thresholding too
many entries of z leads to slower convergence and more itera-
tions, whereas a value of A that is too small allows noise and
subsampling artifacts to pass the thresholding.

The inversion result of the first experiment with the correct
source wavelet is shown in Figure 2a. It clearly shows that the
faults and reflectors are all accurately imaged. The interfaces
are sharp because the influence of the source wavelet has been
removed by the inversion. The data residual decays as a func-
tion of the iteration number (Figure 4a), although some jumps
occur due to redrawing the shot records in iteration. The model
error (Figure 4b) shows the same behaviour. The LS-RTM
image with the wrong wavelet on the other hand has strong
artifacts, blurred layers and the wrongly located diffractors, as
shown in Figure 2c. This test indicates the importance of the
correct source in LS-RTM.

Linearized Bregman with source estimation

To solve the problem with the unknown source wavelet, we
use the linearized Bregman method with source estimation
as described in algorithm 2. The initial guess for the source
wavelet gq is shown in Figure 3. For the source estimation,
the user also needs to supply the parameter & in the damping
function (equation 5). From our experience, once « is big
enough, the recovered source is not sensitive to the change
of a. In our test, we set @ = 8 and A, = 1. The recovered
source (blue dash line) closely matches the correct source time
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Figure 1: Model modified from Sigsbee2A and the corresponding RTM images with correct and wrong source wavelet.
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Figure 2: LS-RTM image results with roughly one data pass

function, but some small differences remain in the frequency
spectrums.
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Figure 3: Recovered source result from the combining algo-
rithm with linearized Bregman

With the same strategy for choosing A as in experiment 1,
the inversion result shown in Figure 2c looks as good as the
result from the first experiment in which the correct source was
used. The residual as a function of the iterations (Figure 4a) is
similar to the residual function with the correct source, with the
beginning being slightly larger due to the wrong initial guess
wavelet. The same is true for the model error in Figure 4b.
However, after 40 iterations, both the final data residual and
model error are in the range as the residual and error from the
experiment with the correct source wavelet.

CONCLUSIONS

In this work, we perform sparsity promoting LS-RTM in the
time-domain using the linearized Bregman method. This algo-
rithm is easy to implement and allows to work with random
subsets of data, which allows to significantly reduce the cost of
LS-RTM. We provide an example in which we show that we are
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Figure 4: Residuals and model errors along iterations

able to obtain a sharp image without the imprint of the wavelet
and true amplitudes at moderate computational cost, which is
in the range of one conventional RTM image. Furthermore, this
method allows to incorporate source estimation into the inver-
sion, by solving an small additional least-squares subproblem
in each Bregman iteration. We propose a modified version of
the LB algorithm including source estimation and show that the
image we obtain is as good as the LS-RTM result in which we
use the correct source wavelet.
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