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SUMMARY

Pure P-wave equations for acoustic modeling in transverse
isotropic media are derived by approximating the exact pure P-
wave dispersion relation. In this work, we present an alternative
approach to the approximate dispersion relation of Etgen and
Brandsberg-Dahl, in which we approximate the exact disper-
sion relation through a polynomial expansion and determine its
coefficients by solving a linear least squares problem that min-
imizes the phase velocity error over the entire range of phase
angles. The coefficients are also optimized over a pre-defined
range of Thomsen parameters, so that the phase error is small
for models with spatially varying anisotropy. Phase velocity
error analysis shows that the optimized pure P-wave equation is
up to one order of magnitude more accurate than other popular
pure P-wave equations, even for highly non-elliptic anisotropy.
The optimized equation can be easily turned into a time-domain
forward modeling scheme and comparisons of the modeled
waveforms with analytical travel times once more illustrate its
high accuracy. We also provide an efficient implementation of
our approach for 3D tilted TI media that limits the count of fast
Fourier transforms per time step to a number that is comparable
to other pure P-wave equations.

INTRODUCTION

In the context of migration and full-waveform inversion (FWI),
anisotropy is commonly modeled under the acoustic approxima-
tion with either pseudo-acoustic wave equations or pure P-wave
equations. Most equations are derived from the P-SV disper-
sion relation by setting the S-wave velocity along the symmetry
axis to zero (Alkhalifah, 2000) and by factoring the resulting
relation into a system of coupled first- or second-order equa-
tions (e.g. Du et al., 2008; Hestholm, 2009; Fowler et al., 2010).
Alternatively, some authors have derived pseudo-acoustic wave
equations directly from the equation of motion and Hook’s law
(Duveneck and Bakker, 2011; Zhang et al., 2011).

Pure P-wave equations have been developed as an elegant ap-
proach to deal with S-wave artifacts that appear in all of these
pseudo-acoustic wave equations. The artifacts not only affect
migrated images optically, but can also lead to stability issues of
the modeling schemes. Pure P-wave equations are obtained by
factoring the pseudo-acoustic dispersion relation into separate
P- and S-wave terms, which leads to an equation that contains
the square root of a differential operator (Liu et al., 2009). Due
to this operator, the pure P-wave equation cannot be turned di-
rectly into a modeling scheme and is most easily approximated
by expanding the square-root into a first-order Taylor series and
by further simplification of the anellitpic term. The resulting
equation is completely free of S-wave artifacts and has no sta-
bility restrictions on the Thomsen parameters and has therefore
gained a large popularity in context of anisotropic RTM (Etgen

and Brandsberg-Dahl, 2009; Crawley et al., 2010a,b; Chu et al.,
2011; Zhan et al., 2013). The main drawbacks of this “stan-
dard” pure P-wave equation are a more difficult discretization
and kinematic errors introduced by the approximations. To
lower these errors, several authors have proposed equations
with higher order series expansions of the square root operator
and/or the anelliptic term (Pestana et al., 2012; Chu et al., 2013;
Du et al., 2014). All these approaches lower the phase veloc-
ity error, but come at increasing computational cost. Further
notable alternatives include Padé approximations of the square
root operator (Schleicher and Costa, 2015), low-rank approxi-
mations (Song et al., 2013; Fomel et al., 2013) and optimized
low-rank approximations (Wu and Alkhalifah, 2014).

In this paper, we obtain a pure P-wave equation by a differ-
ent approach, namely by approximating the exact pure P-wave
equation through a polynomial expansion. The coefficients of
the expansion are obtained by solving an optimization problem
that minimizes the phase velocity errors for a given range of
Thomsen parameters and phase angles. We show that the phase
velocity errors of this scheme are not only significantly smaller
than the errors of the “standard” pure P-wave equation, but are
in fact in the range of second-order Taylor approximations of
exact pure P-wave equation. Furthermore, the computational
cost (in terms of FFTs per time step) is the same as the “stan-
dard” pure P-wave equation scheme by Chu et al. (2011), which
makes this approach feasible for large scale applications.

PURE P-WAVE EQUATIONS IN TI MEDIA

The derivations for any of the pure P-wave equations start from
the pseudo-acoustic dispersion relation, which is obtained by
setting the S-wave velocity in the coupled P-SV dispersion
relation to zero (Alkhalifah, 2000) and by factoring the result
into two separate equations for P-waves and SV-waves (Liu
et al., 2009). The exact pure P-wave relation is:
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where ω is the angular frequency, kx,y,z are the spatial wave
numbers in the x,y,z direction and vpz is the vertical P-wave
velocity. Since this equation contains the square root of a dif-
ferential operator, a time-domain scheme cannot be derived
from this formulation directly. Liu et al. (2009) use an opti-
mized separable approximation to solve Equation 1. A more
convenient approach was proposed by Chu et al. (2011), in
which the authors approximate the square root into a first-order
Taylor series and simplify the anellipticity term, which yields
the standard pure P-wave equation:
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z . The equation can be easily solved with
the pseudo-spectral method, but comes at the cost of kinematic
inaccuracies for strong non-ellipticity. In a follow-up paper,
Chu et al. (2013) investigate this further and suggest an alter-
native formulation in which the anelliptic term is represented
through a geometric series:
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For M = 0, Equation 3 reduces to Equation 2, whereas more
expansion terms lead to a smaller error at a larger computational
cost.

PHASE VELOCITY ERROR MINIMIZING PURE
P-WAVE EQUATION

Instead of a Taylor expansion of the square root, we approxi-
mate Equation 1 using a polynomial expansion with coefficients
a j ∈ R :
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The coefficients a j are determined such that they minimize
the phase velocity error of this scheme. These coefficients
are a function of the Thomsen parameters and for now we set
ε,δ = const and vpz = 1. The scalar phase velocity is given by
vph =

ω

||k|| and we define k = 1 and

k2
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where α ∈ [0, π

2 ]is the phase angle. With these definitions, the
(squared) phase velocity of our approximated P-wave equation
is given by:
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The phase velocity of the exact pure P-wave equation is given
accordingly to Equation 1 . The objective function to be min-
imized in order to calculate the coefficients a j is the relative
phase velocity error
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The ratio of the squared velocities is going to be very close
to 1, so we do a first-order Taylor approximation of

√
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x = 1, which leads to:
√
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error depends linearly on the coefficients a j and the optimal
coefficients that minimize the error are given as the solution of
a linear least squares problem:
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EXTENSION TO VARYING ANISOTROPY PARAME-
TERS

Solving the least squares problem in Equation 9 gives co-
efficients that are optimized for a particular value of ε and
δ . In general, we are interested in modeling wave propaga-
tion in media with spatially varying ε and δ , where ε,δ ∈ R
and the parameters lie in some (physically constrained) range
[εmin,εmax] and [δmin,δmax]. Rather than calculating (and stor-
ing) all a j(ε,δ ) for every combination of ε and δ in the model,
we approximate the functions a j(ε,δ ) by interpolation with
Legendre polynomials:

a j = p jklLk(ε)Ll(δ ), (10)

where j = 1, ...,4 is the coefficient number and Lk are the Leg-
endre polynomials of order k and we use polynomials up to 3rd
order (k, l = 0, ...,3).

Instead of solving for the four coefficients a j that minimize
the phase velocity error for a given set of phase angles and
ε,δ = const., we now solve for 43 = 64 coefficients p jkl that
minimize the phase velocity error for a given set of ε,δ values
and a set of phase angles α . Optimizing for the values p jkl is
still a linear least squares problem. We simply replace the
coefficients a j in Equation 7 and solve the following least
squares problem, in which the approximated phase velocity
is now a function of the phase angle, Thomsen parameters and
coefficients p jkl :
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The size of this linear system is fairly small (64 unknowns and
203 observations if we use 20 angles and Thomsen parameters
each) and can be solved using QR decomposition or other fast
direct methods.

PHASE VELOCITY ERROR ANALYSIS

To evaluate the accuracy of the optimized pure P-wave relation,
we plot the relative phase error (Equation 8) and compare it
to the errors from the pure P-wave equation from Chu et al.
(2013) (Equation 3) for a different number of expansion terms
M = 0,1,2. For further comparison, we also plot the error of
the second order Taylor expansion of Equation 1 (Chu et al.,
2011):



−ω2

v2
pz
≈−

[
(1+2ε)(k2

x + k2
y)+ k2

z

]
−

2(δ − ε)(k2
x + k2

y)k
2
z

(1+2ε)(k2
x + k2

y)+ k2
z

+

[
2(δ − ε)(k2

x + k2
y)k

2
z

]2

[
(1+2ε)(k2

x + k2
y)+ k2

z

]3

(12)
For our optimized scheme, we first define a range for the Thom-
sen parameters and we calculate the optimized coefficients p jkl
using 20 evenly spaced values of ε and δ within that range. We
choose ε ∈ [0,0.5] and δ ∈ [−0.1,0.4], which are typical ranges
for the Thomsen parameters (Thomsen, 1986). Furthermore,
we use 20 phase angles within the range from 0 to π

2 . With the
optimized coefficients, the phase velocity for any combination
of ε and δ can be calculated as a function of the phase angle.
Figures 1 and 2 show the phase velocity errors for two different
combinations of Thomsen parameters.

Figure 1: Relative phase error from different approximations of
the pure P-wave equation for ε = 0.1 and δ =−0.1.

Figure 2: Relative phase error from different approximations of
the pure P-wave equation for ε = 0.4 and δ =−0.05.

In both examples, the phase error from the optimized scheme is
smaller than any of the other errors, in particular, the optimized
scheme is even more accurate than the second order expansion
from Equation 12. Because the coefficients of the expansion
terms are calculated such that they minimize the phase error
in a least squares sense, the error is distributed along all phase
angles, whereas the other schemes based on Taylor expansions
are exact at α = 0 and 90 degree, but inaccurate at intermediate
angles.

Furthermore, the error is calculated as a function of ε and δ :

E(ε,δ ) = max
(
|E(ε,δ ,α)|

)
(13)

As expected, the error for both approximations is small for ε ≈
δ and becomes larger as the difference between the parameters

increases (Figure 3). The phase error of our optimized scheme
is less than 0.2 percent within the entire ε,δ range, whereas
the phase velocity error of the standard pure P-wave equation
is already larger than 1 percent for a large part of the ε,δ range
and larger than 2 percent for highly non-elliptic media. For
large velocity models, where waves are often propagated for
more than a hundred wavelengths, seismic data modeled with
the standard pure P-wave equation is potentially cycle skipped
in certain directions, which then results in misplaced reflectors
in migrated images or wrong gradient updates for FWI.

Pure P-wave equation with M=0 (Eq.
2/3)

Optimized pure P-wave equation (Eq.
4)

Figure 3: Maximum relative error for a range of common
Thomsen parameters.

FORWARD MODELING SCHEME

For a VTI medium, the optimized dispersion relation can be
directly turned into a time-wavenumber equation:
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(14)
where P is the wavefield in the physical domain, P̄ is the wave-
field in the wavenumber domain, F−1 is the three-dimensional
inverse Fourier transform and S(t) is the source function.

Figure 4 show the wavefronts after propagating a 15Hz Ricker
wavelet in a homogeneous 2D medium with vpz = 2kms−1,
ε = 0.4 and δ = −0.05 for 6.5 seconds. This corresponds to
propagating the source wavelet for approximately 100 wave-
lengths and the wavefront of the analytical solution is overlaid
onto the wavefield snapshots. The wavefront of the standard
pure P-wave equation is correct at 0 and 90 degrees, but differs
for more than a wavelength from the analytical solution at in-
termediate phase angles. In the context of FWI, this means that
the modeled data is possibly cycle skipped, even if the correct
velocity model was used. The wavefront that is modeled with
the optimized equation on the other hand, closely matches the
analytical solution for all phase angles.



Standard pure P-wave equation with M=0 (Eq. 2/3)

Optimized pure P-wave equation (Eq. 4)

Figure 4: Snaphots of wavefronts after propagating 100 wave-
lengths in a VTI medium with ε = 0.4 and δ = −0.05. The
analytical wavefront is calculated such that it corresponds to
the maximum of the source wavelet (white colouring).

The optimized pure P-wave equation can be extended to TTI
media as well by replacing the wavenumber vectors with lo-
cally rotated vectors k̂x,y,z that are tilted at an angle θ against
the vertical axis and horizontally rotated with the azimuth φ . In
the time-domain scheme, these spatially varying angles need
to be separated from the wavenumber terms, which potentially
increases the number of terms in Equation 14 enormously. How-
ever, due to the special structure of the optimized equation, the
right-hand side of Equation 14 can be calculated recursively:
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The last term u4 is calculated from u3 in the same way as u3
from u2. The ci terms contain the spatial tilt and rotation of the
symmetry axis:

c1 = 1−2sin2
θ cos2

φ ; c2 = 1−2sin2
θ sin2

φ

c3 =−cos2θ ; c4 =−2sin2
θ sin2φ

c5 =−sin2θ cosφ ; c6 =−sin2θ sinφ

(18)

The last step is to sum and multiply these terms with the opti-
mized coefficients p jkl :
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(19)

Overall, the right-hand side of Equation 19 can be calculated at
the cost of 3 FFTs and 19 inverse FFTs in a 3D TTI medium,
which is the same number of FFTs as in the standard pure
P-wave equation (Chu et al., 2011).

CONCLUSIONS

In this work, we introduce a novel approach to approximate
the pure P-wave dispersion relation and derive a time-stepping
scheme for acoustic-anisotropic modeling. Rather than using
Taylor expansions, we approximate the exact P-wave relation
with a scheme that minimizes the relative phase velocity error
in a least squares sense. This approach yields a highly accurate
modeling scheme with relative phase velocity errors in the range
of a fraction of one percent, making this method an order of
magnitude more accurate than other pure P-wave equations. In
the context of FWI and migration this ensures that for a correct
velocity model, modeled waveforms are not cycle skipped or
reflectors are not mispositioned. Furthermore, we provide an
efficient implementation of the optimized dispersion relation for
TTI media that has similar computational cost as the standard
pure P-wave equation and makes this method feasible for 3D
computations.
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