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SUMMARY

In this work, we present a total-variation (TV)-norm minimiza-
tion method to perform model-free low-frequency data extrap-
olation for the purpose of assisting full-waveform inversion.
Low-frequency extrapolation is the process of extending reli-
able frequency bands of the raw data towards the lower end
of the spectrum. To this end, we propose to solve a TV-norm
based convex optimization problem that has a global minimum
and is equipped with a fast solver. The approach takes into
account both the sparsity of the reflectivity series associated
with a single trace, as well as the inter-trace correlations. A fa-
vorable byproduct of this approach is that it allows one to work
with coarsely sampled trace along time (as coarse as 0.02s per
sample), hence substantially reduces the size of the proposed
optimization problem. Last, we show the effectiveness of the
method for frequency-domain FWI on the Marmousi model.

INTRODUCTION

We consider acoustic full-waveform inversion (FWI) for a typ-
ical situation where low-frequency information is missing. It
is well known that the low wavenumber data can effectively
reduce the number of local minima of FWI and therefore can
be expected to improve the inversion when a bad initial guess
of the model is provided. However, missing low-frequency
situations are commonly observed in both marine and land
acquisitions where data below 5Hz is often too noisy to be
useful.

Approaches tackling this problem consists of both data pro-
cessing techniques and wave-equation based techniques. The
former follows the general belief that the raw data has some
special structure that can be exploited to extract missing low-
frequency information from high frequencies. One common
assumption is sparse reflectivity, i.e., the reflectivity series cor-
responding to a single trace is a sparse spike train. We comment
that this is an idealized assumption that does not strictly hold
even in a 2D constant medium, let alone when we consider pos-
sible frequency dependent dispersion and attenuation effects
present in real dataset. As a result, it is important to design
a robust extrapolation method, which produces acceptable re-
sults when the underlying assumptions are slightly violated and
noise is added. Our point here is that we prefer a method that is
arguably robust rather than relying on unrealistic assumptions
to create what seems like superior but in practice infeasible
results.

Many methods have been proposed for broadening the spec-
trum. In the work by Xie (2013), the author proposed to isolate
single events by windowing in combination with making a lin-
ear phase assumption to extend the spectrum. Unfortunately,
the requirement of manually selecting windows prevents this
approach from effectively handling complex models where two

overlapping event cannot visually separated. (Taylor and Mc-
Coy, 1979), on the other hand, uses a convex optimization
approach that minimizes the data misfit plus the `1-norm of
the Green’s function. In the light of recent results in super-
resolution in the field of Compressed Sensing (Candes and
Fernandez-Granda, 2014; Demanet and Nguyen, 2015), this
approach is better understood. In particular, it is now known
that this approach is sensitive to discretization errors and is
also known to give erroneous results when impulsive arrivals
(spikes) of opposite signs are too closely (closer than twice the
shortest wavelength) located. More recently, Li and Demanet
(2016) proposed a new method, which for the first time explores
the inter-trace relationships. To arrive at their results, the au-
thors use the Multiple Signal Classification (MUSIC) algorithm
(Schmidt, 1986) to deconvolve traces with only a few events,
followed by a lateral continuous extension of these events to
the nearby traces while keeping feasibility of the data. Due
to the use of the MUSIC algorithm, this method is immune to
discretization errors and the benefits of continuation amongst
traces in the lateral direction has been clearly demonstrated by
their stylized examples.

The missing low-frequency treatment in the wave-equation
based approaches, on the other hand, seek to modify the inver-
sion procedure itself with the hope of increasing the convexity
of the optimization problem, leading to variants of FWI (Wu
et al., 2013; Hu, 2014; Sun and Symes, 2012; Van Leeuwen
and Herrmman, 2013; Warner and Guasch, 2013; Biondi and
Almomin, 2014). These methods still have the true model as
the global minimum, hence more stable than the extrapolation
based techniques. However, they are perhaps less intuitive and
the performance may sometimes be hard to predict.

In this abstract, we revisit the convex optimization approach
as a frequency extrapolation method in the data processing
regime. We propose to use a TV norm regularizer that takes
into account the spatial correlation among traces. Comparing
to the original `1 regularizer (Taylor and McCoy, 1979), our
method has the added benefit of increased stability and speed
as well as robustness to the discretization. It should be noted
that this method is only intended for extrapolating towards the
lower end of the spectrum, not to the higher end nor intended
to recovering the complete Green’s function.

METHODOLOGY

Under the no dispersion and no attenuation assumption, a single
seismic trace d j with m events can be written as

d j(t) = q(t)∗G j(t), j = 1, ...,nr,

G j(t) =
m∑

i=1

a j
i χ(t− t j

i ), i = 1, ...,m,
(1)

where q is the time-signature of the source wavelet, G j(t) is the
“reflectivity” series at the jth receiver, nr is the total number of
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receivers, χ(t− ti) represents a single spike corresponding to a
seismic event at time ti and a j

i is the reflection coefficient. Let
us assume that we are working with the discretized versions so
G j, d j, and q are all vectors in RN . Due to the band-limited
nature of the source wavelet and the uneven spectral distribution
of the wavelet’s energy, we can only assume that data has an
acceptable SNR within a middle frequency band, say Ω =
[ωl ,ωl +1, ....,ωh]—i.e.,

d̂ j(ω) = q̂(ω)Ĝ j(ω), ω ∈Ω.

As it is often desired in FWI, the goal of this paper is to extend
the reliable band from Ω to include a range of lower frequencies,
say Ω0. To simplify the problem, we assume that the source
wavelet is known and its spectrum covers Ω.

The classical way to invert the reflectivity series is via sparsity
promoting minimization

G j
est = argmin

G
‖G‖1 subject to Ĝ(ω) =

d̂ j(ω)

q̂(ω)
, ω ∈Ω. (2)

Once G j
est is found, the extrapolated data d̂ j(Ω0) is simply

obtained by

d̂ j(ω) = q̂(ω)Ĝ j
est(ω), ω ∈Ω0.

Since both q and d are known, we essentially look for
Ĝ(ω),ω ∈Ω0 given the knowledge of Ĝ(ω),ω ∈Ω. This is a
cousin of the well-known super-resolution problem in image
processing except that our focus now are the low frequencies.

This method is appealing for its convex nature (which mean it
has no local minimum) and robustness to noise, as well as the
availability of fast algorithms from the Compressed Sensing
community. However, its current form of this approach has
some major issues that prevent it from accurately recovering
perfect spike trains:

1. the dilemma of discretization: when taking time sam-
ples of traces, coarse sampling may result in the true
spike locations in the reflectivity series to go off the
grid causing large disretization errors, while fine dis-
cretization leads to unfeasible demands on storage and
computation;

2. deviation from perfect spikes: for 2D media, the
reflectivity series, which is the Green’s functions
restricted to the receiver locations, is not consistent
with perfect spikes (the wave equation only permits
Dirac in its solution in odd dimensions);

3. limited resolution: even with full knowledge of the
low frequencies, i.e., data is known in [0,ωh], the sparse
signal estimation is subject to resolution issues (Can-
des and Fernandez-Granda, 2014): e.g. if two spikes
with opposite signs are closer than the smallest wave-
length presented in the data, they cannot be resolved by
`1-norm minimization. (Donoho et al., 1992) showed
that spikes with the same sign are immune to this is-
sue. Unfortunately, we cannot assume positivity for the
reflectivity.

While these issues introduce errors in the low-frequency extrap-
olation, they rarely make the extrapolation completely fail (most

errors are local where two spikes are too close). Therefore, we
seek to reduce the error by using regularizers that explore simi-
larities between neighboring traces in either a shot gather or a
seismic line, which we refer to as “spatial similarity”. Recall
the reflectivity series associated with the jth trace is denoted by
G j. For simplicity of notation, let us define the 2D reflectivity
gather G as a matrix formed by putting G j, j = 1, ...,m in its
columns, i.e., G := [G1, ...,Gm]. By definition, G has the same
size as a shot gather. As a 2D image, the y-axis of G represents
time and x-axis represents offset. Data constraints on G j in
Equation 2 become data constraints on G.

There are numerous ways to define spatial similarity. Here
we explore one that is related to the finite-difference operator,
which in turn is related to the TV norm (the absolute sum
of gradient vectors). More rigorously, we use the following
function to characterize the spatial similarity of G,

S (G) =

m−1∑
j=1
‖G j−G j+1‖2

2

m−1∑
j=1

(‖G j‖2
2 +‖G j+1‖2

2)

.

The smaller this quantity is, the more similarities consecutive
reflectivity series share laterally. In case where G j and G j+1 are
not correlated, we have 〈G j,G j+1〉= 0 and S (G) = 1. Hence
in general we consider G to have no spatial similarity when
S (G)≥ 1.

A pitfall here is that no matter how continuous the traces in a
reflectivity gather G visually appear, they can have no spatial
similarity in terms of the value of S (G). This can be seen from
a simple example when G contains only 1 dipping event. In
that case, G as an image contains a single line. Assume the
equation of line is y = ax+b, where y is the time index and x is
the receiver or offset index. Suppose the slope a =−2. Then it
is easy to verify the 0 correlation between neighbouring traces,
i.e., 〈G j,G j+1〉= 0, and that S (G) = 1, despite the fact that
the line is visually continuous.

Instead of directly trying to construct the low frequency com-
ponent of G from its high frequency component, we propose
to first recover some “good” gather Gm in the sense that it is
associated with G through some mathematical relations but
with greater spatial similarity. Once Gm is obtained, the low
frequencies of G can be recovered from that of Gm through
their relations. To this end, we define Gm = f ∗G, where

f = (1, ...,1︸ ︷︷ ︸
r

,0, ...,0)T

(the choice of r is to be discussed later), and where the notation
f ∗G means f is being convolved with each column in G. The
benefit of these convolutions is that they make the events (lines)
in G effectively thicker so nearby reflectivity series are more
likely to be correlated. In fact, one can check for the previous
example that, the value of S decreases from S (G) = 1 to
S (Gm) = 2/r provided that r > 2.

In order to utilize both the spatial similarity and the sparsity
of G, we proposed a TV norm regularizer that replaces the `2
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norm in the definition of S (·) by an `1 norm and adds a vertical
TV regularizer. The resulting problem is

Gm,est = argmin
Gm

‖Gm‖TV ,

subject to Ĝm(ω) = Ĝ(ω) f̂ (ω) =
d̂(ω) f̂ (ω)

q̂(ω)
,ω ∈Ω,

(3)

where for a given matrix M, the 2D TV-norm is defined as
‖M‖TV :=

∑
i, j
‖∇M(i, j))‖`1 with

∇M(i, j) =
[

M(i, j)−M(i, j+1)
M(i, j)−M(i+1, j)

]
.

The low frequencies of G are obtained through the relation

Ĝ(ω) = Ĝm(ω)/ f̂ (ω),ω ∈Ω0.

Let us illustrate the effectiveness of our approach on a simple
synthetic example. The ground truth G (Figure 1a) contains
three events, each corresponding to a line in the reflectivity
gather. Red dots in Figure 1a represent the value 1, blue are
-1, and blanks are zeros. The crossing points of the events are
those where `1 minimization (Equation 2) has trouble to recover
(Figure 1b). Here we have set Ω = [30,50] and Ω0 = [0,30].
The auxiliary image Gm defined by Gm = f ∗G with parameter
r = 2 is plotted in Figure 1c, where one can see that the events
are thickened. After performing the TV norm minimization,
the inverted Gm in Figure 1d has much milder inaccuracy at the
crossing points in the boxed area than those in Figure 1b.

Two comments are in order. A natural question is that whether
we can increase spatial similarity by making the receivers
denser. The answer is yes, but in doing so, we also increased the
total number reflectivity series. In the end, the normalized error
for each G j is not decreased. Due to the limitation of space,
we omit details of the argument. The second comment is about
the choice of r. While mostly heuristic, we highlight some
rough guidance. In principle, we want to choose r such that the
derivative of the convolution kernel f are resolvable under `1
minimization. From the discussion in Candes and Fernandez-
Granda (2014), the resolvability at least requires r ≥ N/(T ωh)
where ωh is the highest frequency in Ω, T is the sampling du-
ration and N is the length of trace. On the other hand, we do
not want r to be too large. Otherwise f becomes a powerful
low-pass filter making the events in Gm lose resolution.

Acceleration

A typical seismic trace is sampled at 1,2,4 or 8 milliseconds
time interval with a sampling duration about 4− 20s. This
means that the trace length of a shot gather can be as long
as 20000 samples. Performing the `1 or TV norm minimiza-
tion, for example, on a 20000× 300 shot gather can be quite
expensive, especially if we want to raise one more dimension
of G to include reflectivity series underlying a whole seismic
line so as to obtain a 2 dimensional spatial continuation. As
a consequence, it is desirable to use coarser time grid. Since
the reflectivity series in G is assumed to be consist of spikes,
which means it has a broad spectrum, then a downsampling
may cause significant aliasing. On the other hand, our auxiliary
variable Gm = f ∗G has relatively low energy in high frequency
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Figure 1: The effect of spatial continuation. a) Ground truth
reflectivity gather G; b) Inverted reflectivity gather using 30−
50Hz data via `1 minimization; c) Fattened reflectivity gather
Gm defined as Gm = f ∗G, f = [1,1,0, . . . ,0]T ; d) Inverted
Gm using 30− 50Hz data via TV-norm minimization. The
reconstruction error of `1 minimization in the boxed areas is
greatly improved by the use of TV norm minimization and
fattening.

bands because the convolution kernel f , besides delivering the
already mentioned thickening benefit, also acts as a low-pass
filter. This means traces corresponding to Gm, i.e. d ∗ f , can be
subsampled without much loss. The final extrapolation result is
also barely affected because we only care about obtaining the
low frequency information.

NUMERICAL EXPERIMENTS

We perform inversion experiments to demonstrate the effective-
ness of extrapolation results of the proposed algorithm. We use
the Marmousi model with about 300 meters water layer added
on top of it to generate the data. Assuming that the data is only
available in 5−20Hz frequency bands, which we generated us-
ing frequency domain finite difference modeling code. It is also
reasonable to assume the availability of broadband (1−20Hz)
data for direct waves. Because we can easily obtain this data
by doing forward modeling on a constant water velocity model.
To perform extrapolation, we remove the direct waves from
5−20Hz synthetic data since they are too strong compared to
the reflections and the refractions. We carry out the proposed
algorithm twice to extrapolate from Ω = {5,5.1, ...,20}Hz to
Ω0 = {1,1.1, ...,4.9}Hz. First time on the reflectivity gathers
(implemented in paralell for each shot) and the next time on the
reflectivity series associated with a seismic line. We compare
these two results. While implementing on a seismic line, we
define the TV norm for all three directions (along time, sources,
and receivers). The direct output of the extrapolation algorithm
is Ĝ(ω),ω ∈Ω0. We use it to construct the final extrapolated
data by the formula d̂(ω) = Ĝ(ω)q̂(ω)+ d̂0(ω), where d̂0(ω)
is the data for direct waves at frequency ω and q̂(ω) is the
Fourier coefficient for the source wavelet. The inversion is
performed using frequency continuation under inverse crime.

In the extrapolation algorithm, we set the time duration and the
total number of samples in each reflectivity series to be 10s and
400 respectively (i.e. sampling in every 0.025s) . We set the
parameter r = 10 in the definition of f , and solve the TV norm
minimization problem (Eq 3) approximately using the NESTA
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algorithm (Becker et al., 2011).

Figure 2 shows a comparison between the extrapolated data
and the true data for three frequencies. Only the real part is
plotted. Among the 12 sub-figures, the ones in the first column
are frequency slices of the true data, those in the second col-
umn are extrapolated data with `1 minimization on reflectivity
gathers, in the third column are extrapolated data with TV norm
minimization on reflectivity gathers, and in last column are TV
norm minimization on the seismic line. The first, second and
third row corresponds to 4Hz,3Hz and 2Hz frequency slices,
respectively. We can see that the use of spatial information has
greatly enhanced and stabilized the result.
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Figure 2: First row: 4Hz data slices. Second row: 3Hz data
slices. Third row: 2Hz data slices. First column: true data
slices. Second column: extrapolated data with `1 minimization.
Third column: extrapolated data with TV norm minimzation
performed on a shot gather. Forth column: extrapolated data
with TV norm minimization performed on a seismic line.

We perform Full Waveform Inversion using frequency con-
tinuation with overlapping frequency batches in the form of
...,{5Hz,5.5Hz},{5.5Hz,6Hz}, .... For each frequency batch,
we use 20 L-BFGS iterations. 67 uniformly spaced sources and
134 uniformly spaced receivers at depth of 24m from the top
surface are used for this experiment. We do not allow water
velocity above the sources and receivers to be updated, i.e.,
setting the gradient of each update to 0 for the grid points be-
tween 0− 24m in depth. This is to make the inversion more
robust to extrapolation errors. We use a 1D linear initial guess,
whose velocity profile is plotted in Figure 4. Figure 3a shows
the true velocity model. Figure 3b-d show the inversion re-
sults. Figure 3b shows the inverted model with narrowband
5− 15Hz true data, 3c shows the inverted model with broad-
band 1−15Hz true data, and 3d shows the inverted model with
1− 5Hz extrapolated data and 5-15Hz true data, where the
extroplation is obtained by applying the proposed method to a
seismic line. While the extrapolation is not entirely accurate,
we demonstrated that if used carefully, it can help the FWI to
correct large wavelength velocity errors in the initial model and

accelerate the convergence.
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Figure 3: (a)True model; (b) Inverted model with 5-15 Hz true
data; (c) Inverted model with 1-15Hz true data; (d) Inverted
model with 5-15 Hz true data and the 1-5 Hz extrapolated data
on seismic line.
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Figure 4: Mean velocity of the initial model compared to that
of the true model at various depths.

CONCLUSION

In this paper, we proposed a method for low-frequency data
extrapolation. The method inherits the stability of the tradi-
tional `1 minimization approach, while having both increased
accuracy and speed. Synthetic inversion test shows that the
artificial low frequency data is accurate enough to correct most
of the large wavelength kinetic error in the initial model.
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