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SUMMARY

In this work, we propose a new method to simultaneously lo-
cate microseismic events (e.g., induced by hydraulic fracturing)
and estimate the source signature of these events. We use the
method of linearized Bregman. This algorithm focuses un-
known sources at their true locations by promoting sparsity
along space and at the same time keeping the energy along time
in check. We are particularly interested in situations where the
microseismic data is noisy, sources have different signatures
and we only have access to the smooth background-velocity
model. We perform numerical experiments to demonstrate the
usability of the proposed method. We also compare our results
with full-waveform inversion based microseismic event collo-
cation methods. Our method gives flexibility to simultaneously
get a more accurate source image along with an estimate of the
source-time function, which carries important information on
the rupturing process and source mechanism.

INTRODUCTION

During hydraulic fracturing high-pressure fluid is injected
through a well creating fractures in the rocks mainly containing
shale (Montgomery and Smith, 2010). Shale contains oil traps
but they are weakly connected due to the low permeability of
shale. These fractures connect the oil traps, which ultimately
enhances the oil productivity. In order to predict the production
level of oil through these fracture induced reservoirs, it is
extremely important to accurately map fracture propagation.

Hydraulic fracturing of rocks causes stress release, which even-
tually emits microseismic waves (Rutledge and Phillips, 2003).
These waves carry important information about different source
parameters such as source location, source origin time, source-
time function etc. In microseismic imaging these induced seis-
mic waves are recorded by surface receivers or receivers along
a well. The resulting data is subsequently used to estimate
different source parameters.

Traditional methods include travel time inversion, which relies
on identification of different P and S components and traveltime
picking of first arrivals of P and S components (Thurber and
Engdahl, 2000; Waldhauser and Ellsworth, 2000). Identification
of different components and traveltime picking of first arrivals
is time consuming and can be extremely difficult in the presence
of noise.

In recent years techniques have been developed that rely less or
not at all on traveltime picking (Rentsch et al., 2007). Also the
focus has shifted to the methods based on imaging (McMechan,
2010; Gajewski and Tessmer, 2005; Sun et al., 2015) and
full-waveform inversion (FWI) (Sjögreen and Petersson, 2014;
Kaderli et al., 2015). These methods rely less on first-arrival
picking and are more robust to noise.

Kaderli et al. (2015) use FWI to invert for both the source-
time function and source location. This method is based on
estimating both parameters in an alternating fashion. However,
the source location estimated by this method looks diffused and
the estimated source-time function is noisier compared to the
true wavelet.

Sun et al. (2015) use a hybrid imaging condition to produce
high-resolution images of the source along both space and time
axes. This method gives information on the source origin time
but does not provide information on the source-time function
itself.

In this work, we propose a new method to simultaneously es-
timate both the source location and the source-time function.
In particular, we aim to develop a method that requires only a
smooth background velocity model and is robust in the presence
of noise. Our approach is based on the co-sparsity property
(Nam et al., 2013) of the physics of waves. Co-sparsity of a
signal u corresponds to the property that there exist a so-called
analysis operator ΩΩΩ that maps u to a vector z with few non-zero
coefficients. In the context of waves, the finite-difference mod-
elling operator acts as an analysis operator for wavefields. This
implies that wavefields under the action of a finite-difference
modelling kernel can be focused to sources generating these
wavefields (Figure 1). We exploit this property of wavefields to
locate microseismic events and estimate the source time func-
tion jointly. To arrive at a computational feasible scheme, we
use the Linearized Bregman (LBR) algorithm (Yin et al., 2008;
Lorenz et al., 2014; Herrmann et al., 2015) to solve the above
mentioned problem.

METHODOLOGY

FWI based methods aim to solve

minimize
f∈Rnx

,w∈Rnt
‖F (m)fwT −d‖, (1)

where F (m) = PA (m)−1 is the forward modeling operator
and {f, w} represent the pair of unknowns, namely the spatial
component of the source f ∈ Rnx , with nx the size of the spatial
grid, and source-time signature w ∈ Rnt with nt the number
of time samples. The linear operator P restricts wavefields
to the receiver locations, followed by a vectorization. A (m)
implements a time-stepping finite-difference modelling oper-
ator, parameterized by the background squared slowness m.
The vector d contains the set of microseismic measurements
recorded at receivers either located at the surface or along a well
or both. In this formulation, the spatial and time components of
the source appear separable via the outer product fwT with T

denoting the transpose. This special structure allows Kaderli
et al. (2015) to treat the spatial and temporal components of
the source separately and estimate them in an alternating fash-
ion. The obvious limitation of this approach is that it can not
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Figure 1: Schematic diagram showing time-stepping finite-difference modelling operator acting as a sparsity promoting operator on
the wavefield. A snapshot of time domain wavefield is shown. The source location is indicated by the outlier (red star) corresponding
to the maxima in the intensity plot and the source time function corresponds to the temporal variation of the estimated wavefield at
the maxima of the intensity plot.

estimate both unknown vectors simultaneously and another
limitation is that it can only work when multiple sources have
the same signature. This method can be extended for multiple
source cases by using a separable higher rank approximation,
where the rank will be equal to the number of sources. Another
obvious limitation of this extended method is that we need prior
information about the number of sources.

Instead of using the separable rank-one or higher rank approx-
imation, we use a lifting technique that is linear for a single
matrix Q, which contains the spatial-temporal distribution for
different sources—i.e. the (i, j) entry in Qi, j = q(xi, t j). Al-
though it can become expensive to handle such a big matrix
instead of handling the two vectors (f and w), it gives us more
flexibility to simultaneously estimate both the source location
and the source-time signature for multiple sources with differ-
ent source signatures without having any prior assumption on
the number of sources.

Kitić et al. (2016) used the fact that the wave equation is in
itself an excellent sparsity-promoting transform to locate the
coordinate of sound sources based on microphone recordings.
We used similar approach in realistic seismic settings to jointly
estimate the microseismic source-location and time-signature.
For a given spatio-temporal wavefield U (generated by applying
the inverse of the A (m) on a sparse source Q), the action of
wave equation on this wavefield, i.e., A (m)U = Q, acts as
a sparsity-promoting transform. For a sufficiently accurate
velocity model, the wave equation maps the full wavefield, U,
to a spatially focused source Q (Figure 1). Hence, for point
sources the finite-difference operator A (m) acts as a sparsity-
promoting transform in space when Q contains a few point
sources. By assuming sources to be localized in space and
smooth along time, we solve

minimize
U

‖A (m)U‖1,2 subject to ‖PU−d‖2≤ ε (2)

with ε is the two-norm of the noise. By solving this mini-
mization problem, we find a wavefield U that has the smallest
`1-norm in space and smallest `2-norm in time (denoted by the
norm ‖·‖1,2)) when acted upon by the wave equations while fit-
ting the data to within ε . From the inverted wavefield, both the
location of the sources and source-time signatures can readily
be extracted.

To make the above optimization problem (equation 3) more
tractable, we invoke a change of variables Q = A (m)U so we
arrive at

minimize
Q

‖Q‖1,2 subject to ‖F (m)Q−d‖2 ≤ ε. (3)

For a given m, Equation 3 takes the form of the classic Basis
Pursuit Denoising(BPDN) Problem.

Motivated by recent successful application of the linearized
Bregman (Yin et al., 2008; Lorenz et al., 2014) to least-squares
migration (Herrmann et al., 2015), we relax the ‖.‖1,2 norm to
a mixed ‖.‖1,2 and Frobenius norm—i.e., we solve

minimize
Q

λ‖Q‖1,2 +
1
2
‖Q‖2

F s.t. ‖F (m)Q−d‖2 ≤ ε.

(4)
As in regular linearized Bregman, the parameter λ controls the
trade of between the “sparsity” and regular two-norm terms.
When λ ↑ ∞ the solution of Equation 4 approaches the solution
of Equation 3. Compared to BP, Equation 4 permits a relatively
simple iterative algorithm (See Algoritm 1 below), which is
robust to noise.

Algorithm 1 Linearized Bregman algorithm.
1. for k=1,2,. . .
2. Vk = F (m)T Πε (F (m)Qk−d) //adjoint solve
3. Zk+1 = Zk− tkVk //auxiliary variable update
4. Qk+1 = Proxλ ‖.‖1,2(Zk+1) //sparsity promotion
5. end

In Algorithm 1, the dynamic step length tk according to Lorenz
et al. (2014) is given by

tk =
‖F (m)Qk−d‖2

‖F (m)T (F (m)Qk−d)‖2 .

The operator Proxλ ‖.‖1,2(c) := argmint λ‖b‖1,2 +
1
2‖c−b‖2

F
is the proximal mapping (Combettes and Pesquet, 2011) of the
`12 norm with Πε (x) = max{0,1− ε

‖x‖}.(x) the projection on
to `2-norm ball.

Compared to other sparsity-promoting approaches, this algo-
rithm is relatively simple to implement and has very few tuning
parameters.
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Line 2 in Algorithm 1 corresponds to a projection of the resid-
ual, given by forward modeling with the current estimate for
Q on the `2-norm ball of size ε , followed by injection of this
scaled residual into the grid and time-stepping backwards in
time with the adjoint of the wave equation. The result V of this
is used to update Z, the auxiliary variable in line 3. To focus
the resulting estimate for the source wavefield, we apply the
proximal operator that sparsifies Q along the spatial coordinates
and that keeps the energy along time in check.

After solving for Q, we obtain a final image of the locations of
the microseismic events by performing a summation of absolute
amplitude of the estimated Q along time at each grid point.
This results in an intensity plot where the source locations
appear as outliers. We obtain estimates for the time-signature
by extracting the temporal variations of the estimated wavefield
at the spatial locations of the maxima in the intensity (Figure 1).

NUMERICAL EXPERIMENTS

We performed two different experiments in order to demon-
strate the ability of proposed algorithm. For both the experi-
ments we used 3 layered synthetic velocity model of dimension
0.9km×0.7km (181×141 points) (Figure 2a & 4a). We used
time-stepping finite-difference modelling method to generate
microseismic data. For both the experiments we used receivers
at 20.0m depth from the top surface and separated by 10.0m
(Figure 2a & 4a) to record the data. For all these experiments we
assume that both the source location and source time function
are unknown.

Experiment 1—True velocity experiment

In the first experiment, we estimate the source location and
source-time function using noise-free synthetic microseismic
measurements. Here, we assume that we know the true ve-
locity. We use a single source located at (0.25km , 0.27km)
(Figure 2a) with Ricker wavelet of peak frequency 20.0Hz to
generate data (Figure 3) of record length 1.0s. We compare
our method with the FWI based (Kaderli et al., 2015) method.
We assume that both the source location and the source-time
function are unknown. We performed 20 iterations each of
Linearized Bregman (LBR) and FWI with 4 inner iterations for
each of unknown source location and unknown source wavelet
in case of FWI. Starting with zero initial guess our method
gives a focused source location (Figure 2b) in comparison to
the FWI-based method (Figure 2c). Moreover, our method is
able to give a good estimation of the source-time function (Fig-
ure 2d) in comparison to FWI, which looks noisier and shifted
in comparison to the true wavelet. For the FWI-based method,
we started with an initial guess of source wavelet as Ricker
wavelet of 20.0Hz (centred at 0.2s).

Experiment 2—Smooth background velocity and noisy
data experiment

In practice, we generally do not have a detailed velocity model.
At most we have a smooth background-velocity model available.
Assuming that we only have access to a smooth background-
velocity model (Figure 4b), we perform this experiment. We
also assume that our data is noisy. We use two sources lo-
cated at (0.25km , 0.27km) and (0.60km , 0.28km) (Figure 4a)
and source wavelet as Ricker wavelet with peak frequency of
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Figure 2: (a) Acquisition geometry with velocity model. Re-
ceivers are separated by 10.0m. Source location estimated
by (b) Linearized Bregman as the outlier in the intensity plot,
(c) FWI, (d) Comparison of normalized wavelet estimated by
Linearized Bregman (LBR) and FWI with the normalized true
wavelet and normalized initial guess of wavelet for FWI based
method.
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Figure 3: Noise free microseismic data generated by single
source at 20.0Hz Ricker wavelet in synthetic model w/ 3 layers.

20.0Hz (centered at 0.1s) and 15.0Hz (centered at 0.2s), re-
spectively to generate data (Figure 5a) of record length 1.0s.
We add to it low frequency (up to 45.0Hz) random noise to
get the noisy data (Figure 5b) (SNR = 0.34). We use noisy
data and smooth velocity to jointly estimate the source location
and source time function for both sources. We perform 150
iterations each of Linearized Bregman and FWI with 4 inner
iterations each for inverting for the source location and source-
time function. For FWI, we use a separable rank 2 matrix
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(Equation 5). Here we aim to solve following rank 2 system:

minimize
f1,f2∈Rnx

,w1,w2∈Rnt
‖F (m)(f1w1

T + f2w2
T )−d‖, (5)

In order to decide the rank, we assume in this case that we know
the number of sources a priori. Conversely, for our method, we
do not need to know the number of sources a priori. With zero
initial guess our method is able to give a good estimation of
the location of both the sources (Figure 6a) in comparison to
the FWI based method (Figure 6b). Also our method is able
to give a good approximation of the true source-time function
at both the locations in comparison to FWI (Figures 6c & 6d).
For the FWI-based method, we started with an initial guess of
the source wavelets w1 and w2 as Ricker wavelet with peak
frequency of 20.0Hz (centered at 0.3s) and 15.0Hz (centered
at 0.4s), respectively.
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Figure 4: (a) Synthetic model w/ 3 layers along with acquisition
geometry: Source 1 has a peak frequency at 20.0Hz and source
2 has a peak frequency of 15.0Hz activating delayed by 0.1s
compared to the activation of source 1 (b) Smooth background-
velocity model used for source-location and source-time func-
tion estimation
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Figure 5: (a) Noise-free microseismic data generated in syn-
thetic model w/ 3 layers by two sources with different frequen-
cies of 20.0Hz and 15.0Hz and activating at time interval of
0.1s and (b) Noisy microseismic data generated in synthetic
model w/ 3 layers (SNR = 0.34)
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Figure 6: (a) Intensity plot showing estimated source loca-
tion as two anomalies using Linearized Bregman for a smooth
background-velocity model.(b) Source locations estimated by
FWI using the same smooth background-velocity. Comparison
of normalized wavelet estimated by Linearized Bregman (LBR)
and FWI with the normalized true wavelet and normalized ini-
tial guess of wavelet for FWI based method (c) at location 1
and (d) at location 2.

CONCLUSIONS

We have presented a new methodology to simultaneously locate
microseismic events and estimate the source-time functions
from surface microseismic measurements. We exploited the un-
derlying physics of wave propagation by focusing the microseis-
mic measurements back to its true source location. Linearized
Bregman based method seems to be robust to noise and simple
to be implemented with very few tuning parameters. It is also
able to jointly invert for the source location and source-time
function without any prior knowledge of these parameters. We
demonstrated that starting with zero initial guess, even when
data is noisy and we only have a smooth background velocity
model available, we are able to recover accurate approxima-
tions of both the source locations and source-time functions.
We also demonstrated the success of our method when we have
microseismic sources with different signature.
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