Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2016 SLIM group @ The University of British Columbia.

Parallel reformulation of the sequential adjoint-state method

Bas Peters*, Tristan van Leeuwen[#] & Felix J. Herrmann*

*Seismic Laboratory for Imaging and Modeling (SLIM), University of British Columbia [#] Mathematical Institute, Utrecht University.

University of British Columbia

Computational cost of Full-Waveform Inversion

Focus is on computational cost in turnaround time.

Not about:

- faster PDE solves
- optimization algorithms w/ a better rate of convergence
- better implementations & hardware/software interaction

Computational cost of Full-Waveform Inversion

This talk reformulates the basic algorithms

- mathematically equivalent method
- achieves factor 2X speedup in time for fixed resources
- requires source/receiver randomization & subsampling
- requires stochastic optimization
- only useful in parallel computing environment
- exploit special saddle-point structures

Function value and gradient

$$f(\mathbf{m}) = \frac{1}{2} \sum_{i=1}^{n_{\text{src}}} ||PA(\mathbf{m})^{-1} \mathbf{q}_i - \mathbf{d}_i||_2^2$$

 $A(\mathbf{m}) \in \mathbb{C}^{N \times N}$ discrete PDE

 $\mathbf{m} \in \mathbb{R}^N$ medium parameters

 $P \in \mathbb{R}^{m \times N}$ selects field at receivers

 $\mathbf{u} \in \mathbb{C}^N$ field

 $\mathbf{d} \in \mathbb{C}^m$ observed data

 $\mathbf{q} \in \mathbb{C}^N$ source

Function value and gradient – adjoint-state

$$f(\mathbf{m}) = \frac{1}{2} \sum_{i=1}^{n_{\text{src}}} ||PA(\mathbf{m})^{-1}\mathbf{q}_i - \mathbf{d}_i||_2^2$$

Algorithm 1 The conventional sequential adjoint-state algorithm to compute **g**.

- 1. $\mathbf{u}_i = A(\mathbf{m})^{-1} \mathbf{q}_i //\text{forward solve}$
- 2. $\mathbf{v}_i = A(\mathbf{m})^{-*} (P^*(P\mathbf{u}_i \mathbf{d}_i))$ //adjoint solve
- 3. $\mathbf{g}_i = \left(\frac{\partial A(\mathbf{m})\mathbf{u}_i}{\partial_{\mathbf{m}}}\right)^* \mathbf{v}_i$ //evaluate gradient
- 4. $\mathbf{g} = \sum_{i=1}^{n_s} \mathbf{g}_i$ //sum gradient components

Function value and gradient – adjoint-state

Adjoint-state:

- parallel over sources & frequencies
- 2 sequential PDE solves for each source/frequency

Limiting factor if:

- a large number of available compute nodes
- a small number of sources (stochastic optimization, simultaneous sources)

Proposed algorithm – parallel reformulation

Same objective:

$$f(\mathbf{m}) = \frac{1}{2} \sum_{i=1}^{n_{\text{src}}} ||PA(\mathbf{m})^{-1} \mathbf{q}_i - \mathbf{d}_i||_2^2$$

w/o derivation:

Algorithm 2 The parallel reformulation to compute g.

- 1. $\mathbf{u}_i = A(\mathbf{m})^{-1} \mathbf{q} \, \& W = A(\mathbf{m})^{-*} P^*$ //solve in parallel
- 2. $\mathbf{v}_i = -W(P\mathbf{u}_i \mathbf{d}_i))$ //evaluate adjoint
- 3. $\mathbf{g}_i = \left(\frac{\partial A(\mathbf{m})\mathbf{u}_i}{\partial_{\mathbf{m}}}\right)^* \mathbf{v}_i$ //evaluate gradient
- 4. $\mathbf{g} = \sum_{i=1}^{n_s} \mathbf{g}_i$ //sum gradient components

Proposed algorithm – parallel reformulation

Same objective:

$$f(\mathbf{m}) = \frac{1}{2} \sum_{i=1}^{n_{\text{src}}} ||PA(\mathbf{m})^{-1}\mathbf{q}_i - \mathbf{d}_i||_2^2$$

w/o derivation:

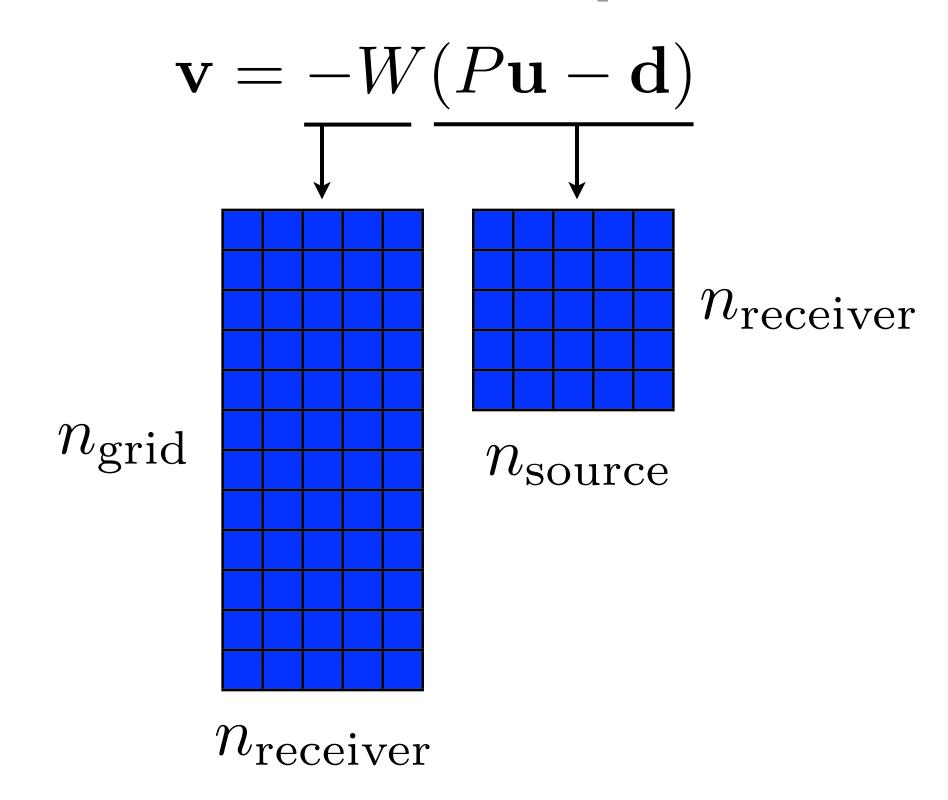
Algorithm 2 The parallel reformulation to compute g.

- 1. $\mathbf{u}_i = A(\mathbf{m})^{-1} \mathbf{q} \& W = A(\mathbf{m})^{-*} P^* //\text{solve in parallel}$
- 2. $\mathbf{v}_i = -W(P\mathbf{u}_i \mathbf{d}_i)) // \text{evaluate adjoint}$
- 3. $\mathbf{g}_i = \left(\frac{\partial A(\mathbf{m})\mathbf{u}_i}{\partial_{\mathbf{m}}}\right)^* \mathbf{v}_i //\text{evaluate gradient}$
- 4. $\mathbf{g} = \sum_{i=1}^{n_s} \mathbf{g}_i$ //sum gradient components

Proposed algorithm – parallel reformulation

- 2 PDE solves in parallel
- solve 1 PDE per sources & 1 per receiver
- ullet 1 distributed matrix (W) local vector product to evaluate adjoint

Distributed computations



- each column is computed & stored on a different node
- multiple columns per node if block-solvers are used
- result is also distributed

Original problem:
$$\min_{\mathbf{m},\mathbf{u}} \frac{1}{2} ||P\mathbf{u} - \mathbf{d}||_2^2$$
 s.t. $A(\mathbf{m})\mathbf{u} = \mathbf{q}$

Lagrangian:
$$L(\mathbf{m},\mathbf{u},\mathbf{v}) = \frac{1}{2}\|P\mathbf{u} - \mathbf{d}\|_2^2 + \mathbf{v}^* \big(A(\mathbf{m})\mathbf{u} - \mathbf{q}\big)$$

Characterize the sub-problem for fixed mat every iteration: (for one frequency)

$$\begin{pmatrix} P^*P & A^* \\ A & 0 \end{pmatrix} \begin{pmatrix} \mathbf{u} \\ \mathbf{v} \end{pmatrix} = \begin{pmatrix} P^*\mathbf{d} \\ \mathbf{q} \end{pmatrix}$$

Any solution method for solving

$$\begin{pmatrix} P^*P & A^* \\ A & 0 \end{pmatrix} \begin{pmatrix} \mathbf{u} \\ \mathbf{v} \end{pmatrix} = \begin{pmatrix} P^*\mathbf{d} \\ \mathbf{q} \end{pmatrix}$$

results in the u&v required to compute objective & gradient of

$$f(\mathbf{m}) = \frac{1}{2} \sum_{i=1}^{n_{\text{src}}} ||PA(\mathbf{m})^{-1}\mathbf{q}_i - \mathbf{d}_i||_2^2$$

$$\begin{pmatrix} P^*P & A^* \\ A & 0 \end{pmatrix} \begin{pmatrix} \mathbf{u} \\ \mathbf{v} \end{pmatrix} = \begin{pmatrix} P^*\mathbf{d} \\ \mathbf{q} \end{pmatrix}$$

- square saddle point system
- ullet full-rank if A is full rank (satisfied by assumption)
- P^*P is square & rank-k, k=number of receivers

Remark:

block elimination = discrete adjoint-state method

$$\begin{pmatrix} P^*P & A^* \\ A & 0 \end{pmatrix}^{-1} = \begin{pmatrix} 0 & A^{-1} \\ A^{-*} & -A^{-*}P^*PA^{-1} \end{pmatrix}$$

$$\mathbf{u} = A^{-1}\mathbf{q}$$

$$\mathbf{v} = -A^{-*}P^*PA^{-1}\mathbf{q} + A^{-*}P^*\mathbf{d} = -\underline{A^{-*}P^*}(P\mathbf{u} - \mathbf{d})$$

$$\stackrel{=}{=} W$$

Computations become independent if we compute $W = A^{-*}P^*$

Proposed algorithm

Algorithm 2 The parallel reformulation to compute g.

- 1. $\mathbf{u}_i = A(\mathbf{m})^{-1} \mathbf{q} \& W = A(\mathbf{m})^{-*} P^* //\text{solve in parallel}$
- 2. $\mathbf{v}_i = -W(P\mathbf{u}_i \mathbf{d}_i))$ //evaluate adjoint
- 3. $\mathbf{g}_i = \left(\frac{\partial A(\mathbf{m})\mathbf{u}_i}{\partial_{\mathbf{m}}}\right)^* \mathbf{v}_i$ //evaluate gradient
- 4. $\mathbf{g} = \sum_{i=1}^{n_s} \mathbf{g}_i$ //sum gradient components

Proposed algorithm

Solve in parallel:

1 PDE per source & 1 PDE per receiver

achieves 2X speedup in time if:

$$n_{
m src} + n_{
m rec} \leq {
m maximum number of PDE solves in parallel}$$

We need

- stochastic optimization
- source & receiver randomization + subsampling

Algorithm 3 Stochastic optimization algorithm to minimize $f(\mathbf{m}) = \sum_{i=1}^{n_s} f_i(\mathbf{m})$.

iteration counter k = 1, set sufficient descent parameter c while not converged

- 1a. $\tilde{\mathbf{q}}$ //draw 1 or a few source samples
- 1b. $\tilde{p}\,//\text{draw}$ 1 or a few receiver samples //approximate function value and gradient
- 2. $\tilde{f}(\mathbf{m}) = \frac{1}{2} \sum_{i=1}^{\tilde{n}_s} ||\tilde{P}A(\mathbf{m}_k)^{-1} \tilde{\mathbf{q}}_i \tilde{\mathbf{d}}_i||_2^2$
- 3. $\tilde{\mathbf{g}} = \sum_{i=1}^{\tilde{n}_s} \mathbf{g}_i$
- 4a. $\tilde{f}_{ref} = \{\tilde{f}_k, \tilde{f}_{k-1}, \dots, \tilde{f}_{k-M}\}$
- 4b. $\gamma = 1$
- 4c. if $\tilde{f}(\mathbf{m}_k \gamma \tilde{\mathbf{g}}) < \max(f_{\text{ref}}) + c$

$$\mathbf{m}_{k+1} = \mathbf{m}_k - \gamma \tilde{\mathbf{g}}$$
 // update model estimate $k = k+1$

else

$$\gamma = \eta \gamma // {\rm step}$$
 size reduction, $\eta < 1$ go back to 4c

end

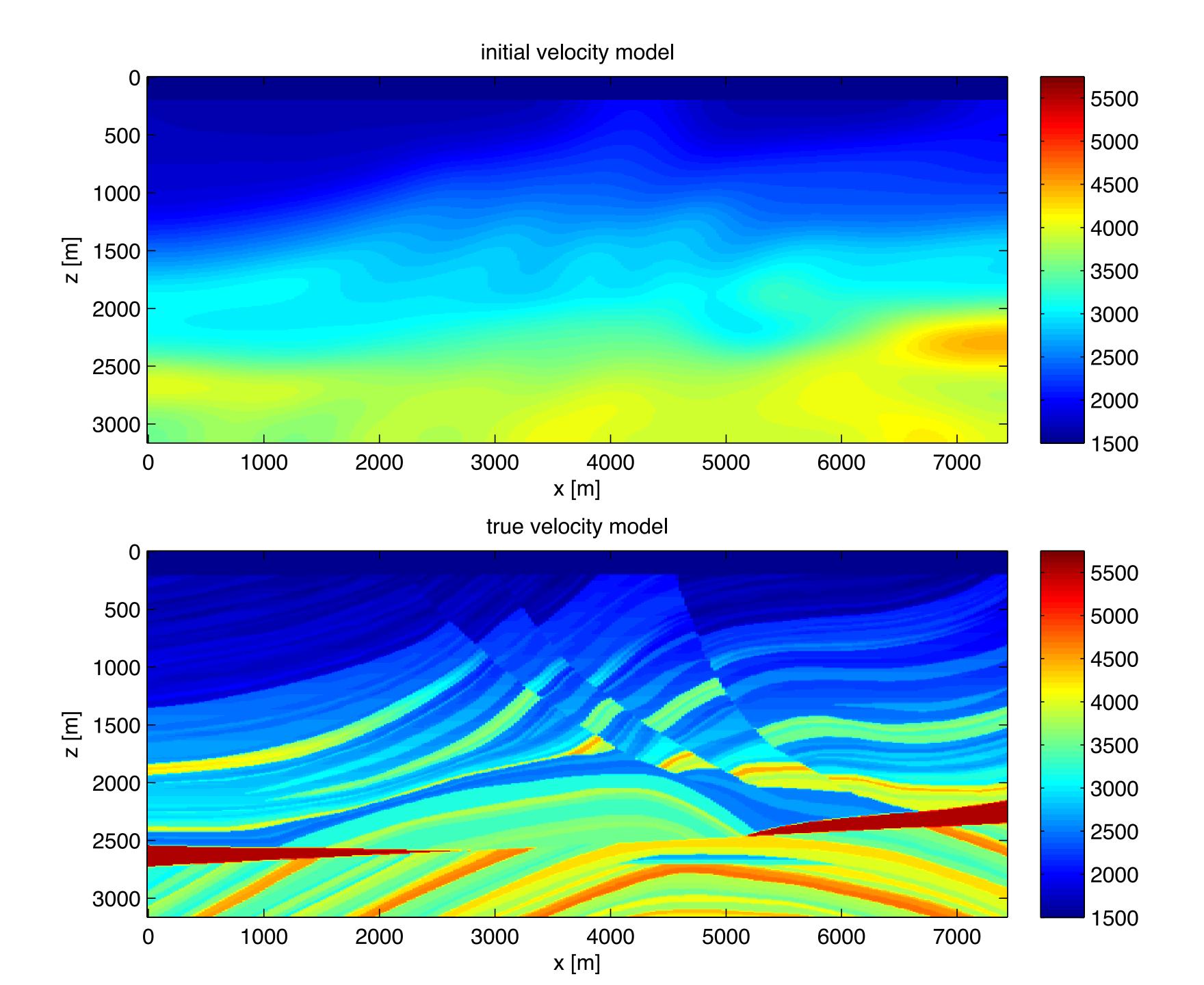
Numerical example 1

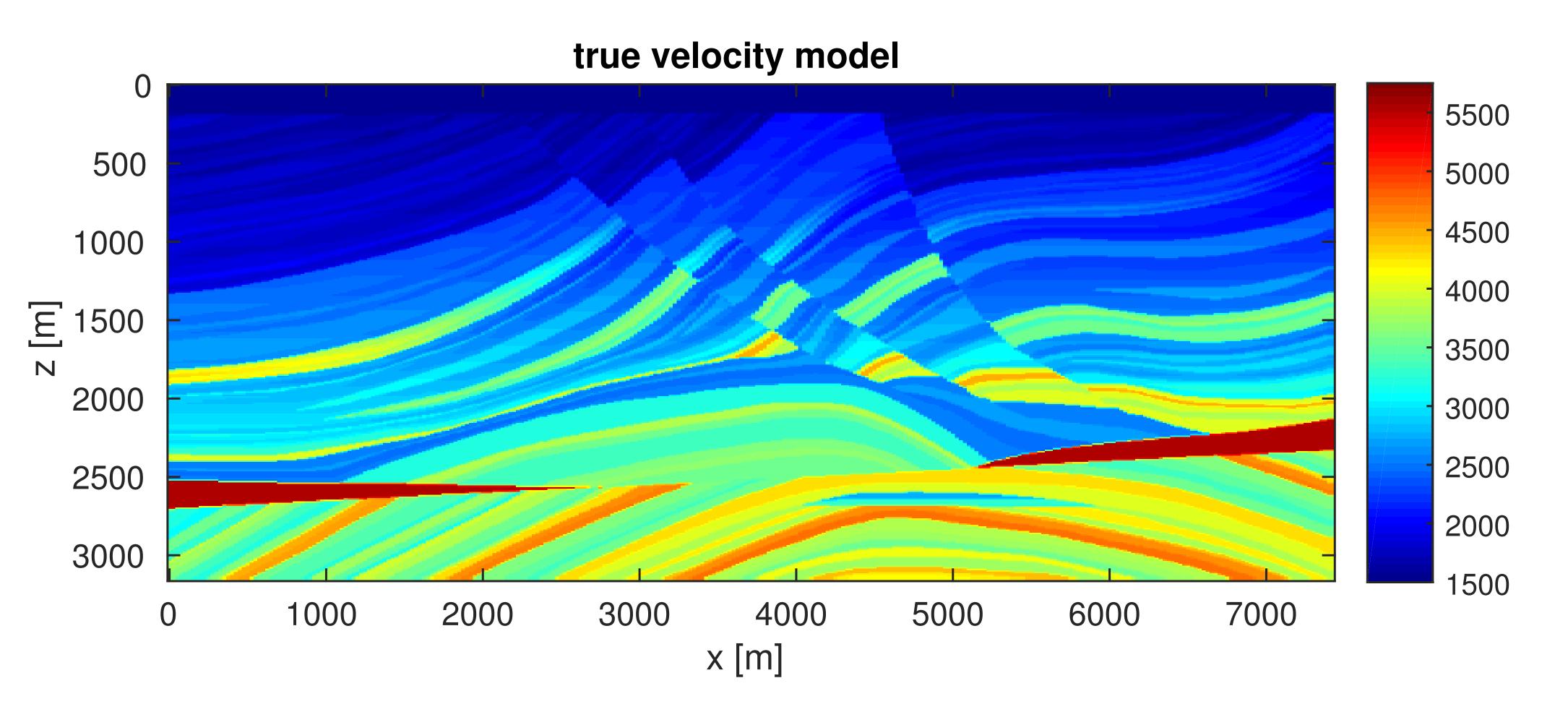
Optimization:

- stochastic gradient descent-type with bound-constraints
- redraw subset of sources and receivers every iteration
- non-monotone line-search

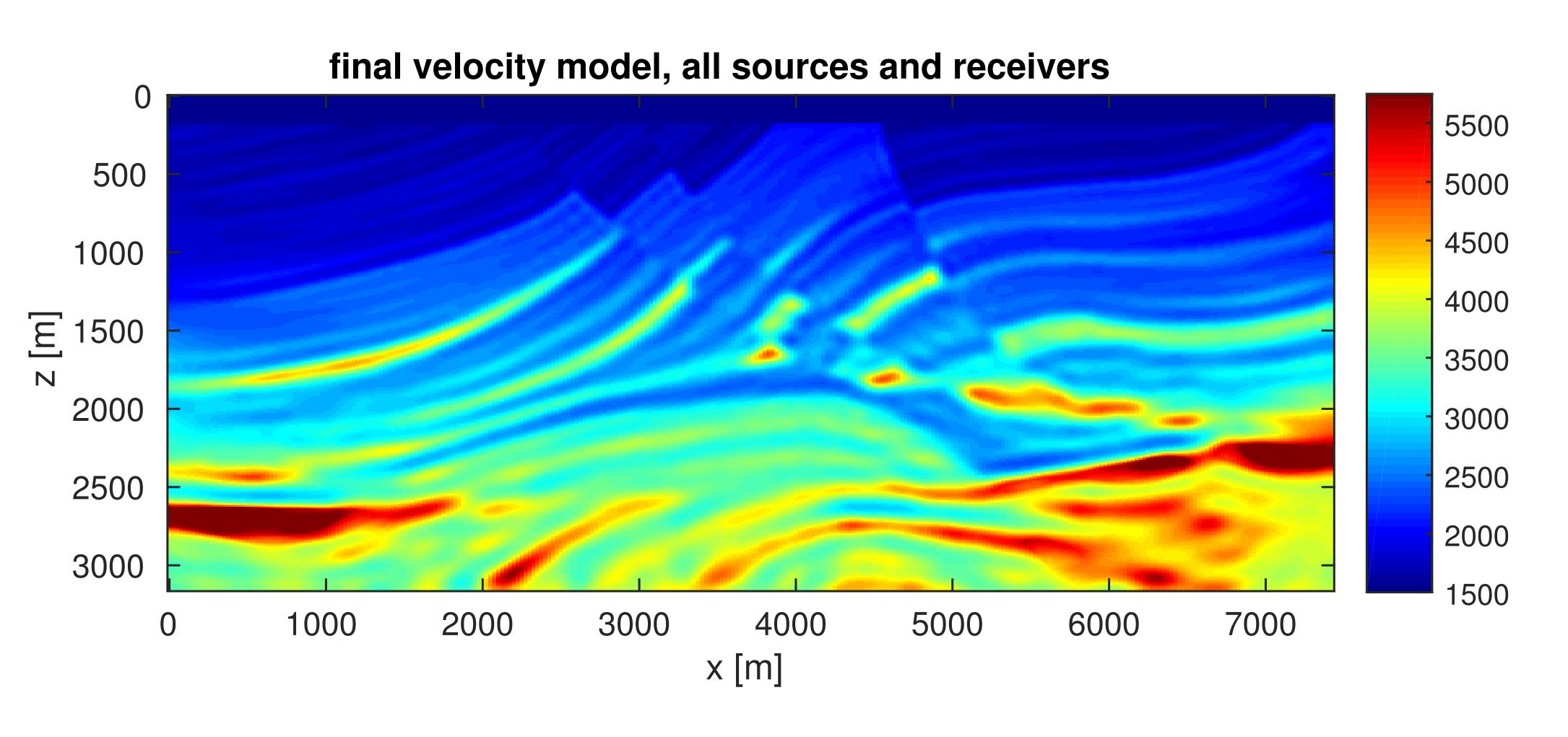
Experiment:

- 3 10 Hz data (2 cycles through the frequencies)
- Ricker wavelet, 10Hz peak
- source spacing: 50m, receiver spacing: 50m

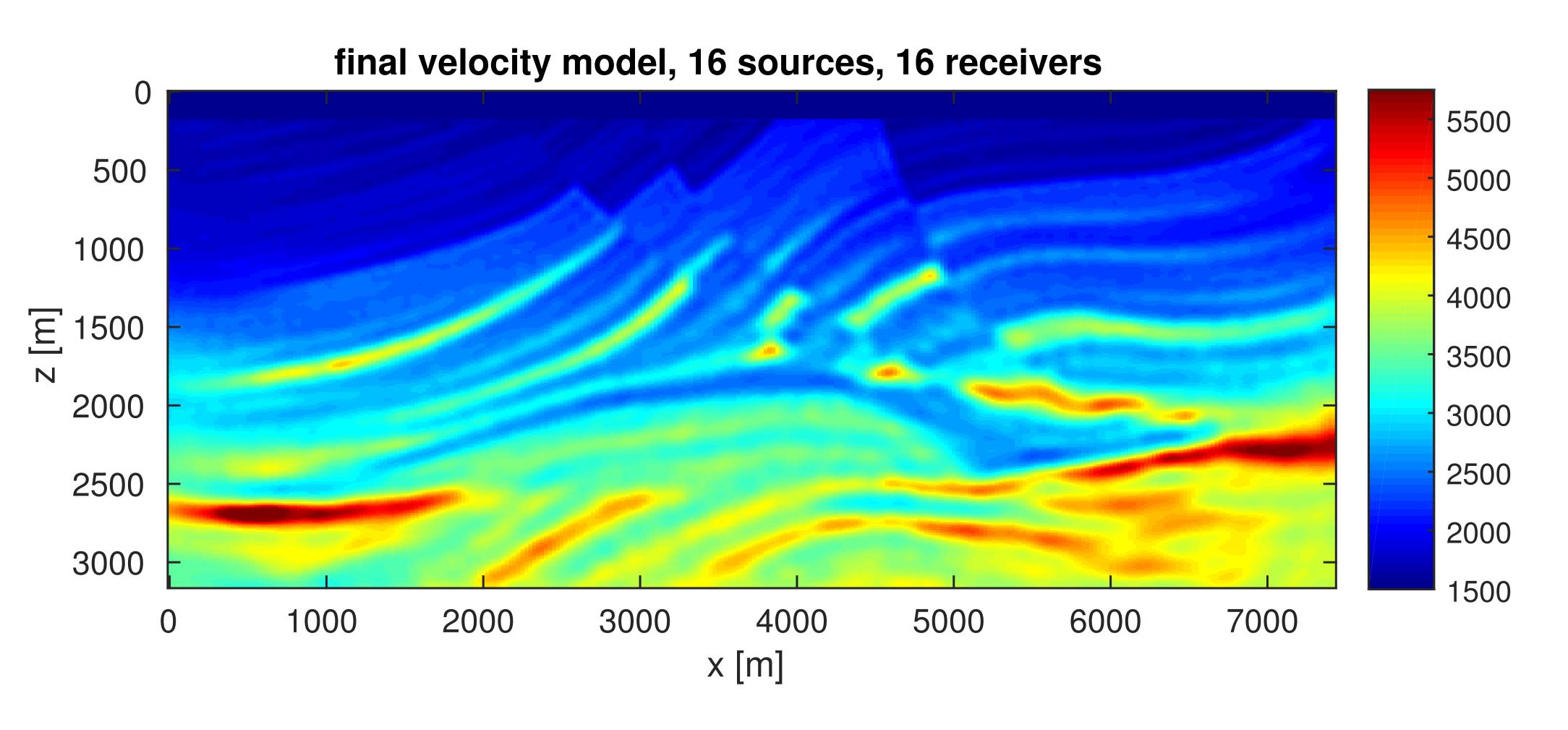




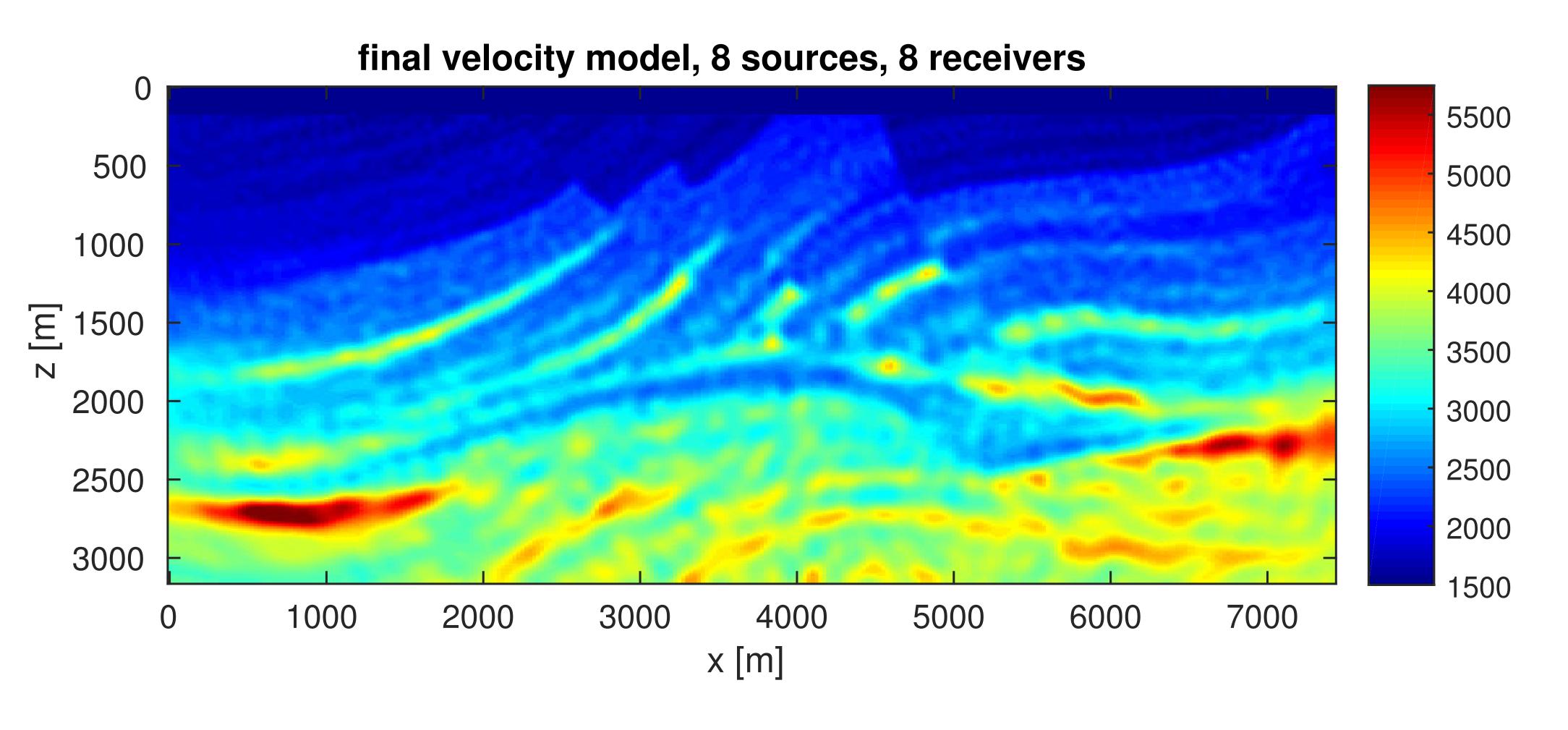
all sources & all receivers bound-constraints



16 randomly selected sources 16 randomly selected receivers bound-constraints



8 randomly selected sources 8 randomly selected receivers bound-constraints



Connections to Gauss-Newton methods

Gauss-Newton Hessian (one frequency):

$$H_{\text{GN}} = J^*J = \sum_{i=1}^{n_{\text{S}}} G(\mathbf{u}_i)^*A^{-*}P^*PA^{-1}G(\mathbf{u}_i)$$

In a serial computing setting: solve and save the two types of fields:

$$H_{\mathrm{GN}} = \sum_{i=1}^{n_{\mathrm{S}}} G(\mathbf{u}_i)^* WW^* G(\mathbf{u}_i)$$
 [Habashy et al. , 2011]

Combine with source & receiver compression to reduce storage.

Outlook

Number of sources & receivers can be reduced if prior information is available.

In this case we can solve:

$$f(\mathbf{m}) = \frac{1}{2} \sum_{i=1}^{n_{\text{src}}} ||PA(\mathbf{m})^{-1} \mathbf{q}_i - \mathbf{d}_i||_2^2 \quad \text{s.t.} \quad \mathbf{m} \in \mathcal{C}$$

 \mathcal{C} : convex set, describing smoothness, total-variation, sparsity properties, etc

Conclusions

Proposed algorithm: different way to compute the gradient

- Solve all wave-equations in parallel.
- Twice as fast as adjoint state, provided sufficient parallel resources.
- Requires source and receiver subsampling to be practical.
- Applies to any inverse problem with the same structure as FWI.

Acknowledgements

This research was carried out as part of the SINBAD project with the support of the member organizations of the SINBAD Consortium.

