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SUMMARY

This abstract is about reducing the total computation time to
solve full-waveform inversion problems. A common problem
formulation is a nonlinear least-squares problem where the
gradient is computed using the adjoint-state algorithm. This
formulation offers parallelism for the computation of gradi-
ents for different sources and frequencies. The adjoint-state
algorithm itself is sequential however and this is a limiting fac-
tor when a lot of compute nodes are available and only a few
wavefields need to be computed. This situation occurs when
stochastic optimization strategies are used to minimize the ob-
jective function. We present a parallel reformulation of the
sequential adjoint-state algorithm, which allows the forward-
and adjoint wavefields to be computed in parallel. Both algo-
rithms are mathematically equivalent but the parallel version
is twice as fast in run time. An important characteristic of the
proposed algorithm is that one wavefield needs to be computed
per source and one per receiver. These fields can be used to
apply the (inverse) Gauss-Newton Hessian to a vector without
recomputing wavefields. A 2D example shows that good full-
waveform inversion results are obtained, even when a small
number of sources and receivers is used.

INTRODUCTION

This work is about the computational aspects of frequency-
domain full-waveform inversion (FWI). The most costly com-
putational component of full-waveform inversion is the solution
of partial differential equations (PDEs), in acoustic inversions
this is the scalar Helmholtz equation. Simple gradient descent
and quasi-Newton algorithms to minimize a nonlinear data-
misfit function require gradients and function values, which in
turn require PDE solves. In this work, it is assumed that the
PDEs are solved using iterative methods.

There are several ways to reduce the computational cost. Faster
PDE solvers or optimization algorithms with a better rate of
convergence is one option. Other work focusses on using a
smaller number of (simultaneous) sources per FWI iteration,
utilizing randomization and subsampling techniques (Krebs
et al., 2009,Symes (2010), Habashy et al. (2011), Haber et al.
(2012), van Leeuwen and Herrmann (2013), van Leeuwen et al.
(2011)).

In this work, we focus on the problem formulation itself to
achieve a speedup in time, given fixed computational resources.
We also show that the proposed reformulation is very well
suited to work with source and receiver randomization and
subsampling.

We will follow the common formulation of full-waveform inver-
sion as the solution of a nonlinear least-squares problem. This

formulation has been used by many authors over the past few
decades, together with the adjoint-state technique to compute
the gradient of of the nonlinear least-squares objective function.
Although wavefields can be computed in parallel for different
sources and different frequencies, the adjoint-state algorithm
itself is sequential. A forward wavefield is solved first, the
resulting data-residual is then back-propagated using another
PDE solve. However, the adjoint-state sequence of operations
is just one way to compute a gradient for the full-waveform
inversion problem. In this work, we show that a parallel (as
opposed to sequential) reformulation is also possible, yielding
a 2× speedup in run time.

A numerical example illustrates the feasibility of this method.

PARALLELIZING FORWARD AND ADJOINT SOLVES

Consider the following widely used objective function for
frequency-domain full-waveform inversion (FWI):

f (m) =
1
2

ns∑
i=1

‖PA(m)−1qi−di‖2
2, (1)

where the goal is to find a local minimizer. The matrix A(m) ∈
CN×N is the Helmholtz operator for a single frequency, dis-
cretized on a n1×n2×n3 = N grid depending on the medium
parameters m∈RN . The operator P∈Rnr×N restricts the wave-
field to the receiver locations (‘observation’ matrix), qi ∈ CN

is the vector containing the source function and di ∈ Cnr is
the observed data. A well-known technique to compute the
gradient g = ∇m f (m) is shown in Algorithm 1 below. The
complex-conjugate transpose in this pseudo code is indicated
by a star ∗. The partial derivative ∂m(A(m)u) is given by
ω2diag(u) in case the Helmholtz equation is discretized in
the form A(m) = L+ω2diag(m) with the discrete Laplacian L.
The term diag(m) is interpreted as a diagonal matrix with m
on the diagonal. ns indicates the number of sources and nr the
number of receivers.

Algorithm 1 The conventional sequential adjoint-state algo-
rithm to compute g.

1. ui = A(m)−1qi //forward solve
2. vi = A(m)−∗(P∗(Pui−di)) //adjoint solve

3. gi =
(

∂A(m)ui
∂m

)∗
vi //evaluate gradient

4. g =
∑ns

i=1 gi //sum gradient components

Although the above gradient can be computed for every source
and frequency in parallel, the adjoint-state algorithm itself is
essentially sequential. The forward problem needs to be solved
first before the adjoint-computation can be started. If the par-
allel computational resources are such that more Helmholtz
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problems can be solved in parallel than there are forward or
adjoint problems, the adjoint-state algorithm cannot take advan-
tage of these available resources.

As we mentioned earlier, the adjoint-state algorithm (Algo-
rithm 1) is just one instance of the several options to compute
the gradient ∇m f (m). For instance, a different algorithm can
be obtained by first substituting the forward equation into the
adjoint wave equation, i.e., vi = A(m)−∗(P∗(PA(m)−1qi−di))
and then factoring out the term W = A(m)−∗P∗. The adjoint
wavefield can now be written as vi =W (PA(m)−1qi−di)). If
the dense matrix W ∈CN×nr is computed explicitly, the compu-
tations of u and W are independent and can be done in parallel.
Moreover, there are no Helmholtz solves required to obtain
the adjoint wavefield in this case, just matrix-vector products
with the dense matrix W and vector additions are required. The
computation of W requires one adjoint Helmholtz solve per
receiver. Because we solve 1 or a few Helmholtz problems on
each compute node, W is a column distributed matrix.

This alternative algorithm to compute the gradient of (1) is
summarized in Algorithm 2 and some important properties are
listed in Table 1 as well.

Algorithm 2 The parallel reformulation to compute g.

1. ui =A(m)−1q & W =A(m)−∗P∗ //solve in parallel
2. vi =−W (Pui−di)) //evaluate adjoint

3. gi =
(

∂A(m)ui
∂m

)∗
vi //evaluate gradient

4. g =
∑ns

i=1 gi //sum gradient components

The parallel reformulation of Algorithm 2 can take advantage
in cases where many compute nodes are available and where we
work with relatively few sources and receivers. In that case, our
parallelized gradient algorithm runs at twice the speed in terms
of total time compared to the conventional adjoint-state method
(Algorithm. 1) if ns+nr ≤ (number of Helmholtz problems that
can be solved in parallel). Because most seismic surveys in-
volve hundreds, if not thousands or more sources and receivers,
we can only realize this factor 2 speedup in a stochastic opti-
mization framework where only a few sources and receivers are
used at every iteration of FWI. While the conventional adjoint-
state method has the advantage that receivers come for ‘free’,
not all receivers are required at each iteration when a stochastic
optimization framework is used. This is illustrated with an
example in a later section.

STOCHASTIC OPTIMIZATION VIA SOURCE/RE-
CEIVER RANDOMIZED SUBSAMPLING

The main idea is to minimize the separable objective f (m) by
working with only a few of it’s components, i.e. (composite)
sources and/or (composite) receivers, per iteration. These com-
ponents can be changed every iteration or after a few iterations.
In this way, all sources and receivers can be touched as the itera-
tions progress. (Haber et al., 2012,van Leeuwen and Herrmann
(2013), van Leeuwen et al. (2011))

In this application of stochastic optimization ideas, we redraw

at every iteration a new set of randomly selected sources and
receivers. Algorithm 2 also works in conjunction with other ran-
domization and subsampling techniques such as simultaneous
sources and methods based on singular value decomposition
of data or data-misfit matrices (Symes, 2010,Habashy et al.
(2011)). van Leeuwen and Herrmann (2013) and van Leeuwen
et al. (2011) compare different subsampling strategies.

For our purposes, using a smaller number of sources for each
iteration is not enough, because Algorithm 2 requires one PDE
solve per receiver. Therefore some kind of receiver subsam-
pling is also required. Receiver compression was used before
by Habashy et al. (2011) in the context of simplifying the
computations required to apply the Gauss-Newton Hessian cor-
responding to the objective (1) in a serial computing setting.
We randomly draw subsets of receivers.

Working with subsets of sources and receivers results in ap-
proximations to the objectives f̃ (m) and gradients g̃, compared
to the full objective based on all sources and receivers. The
true objective value is generally not available. ñr indicates the
subsampled number of receivers. At every iteration, the number
of PDEs that need to be solved is ñr+ ñs, which is much smaller
than nr +ns.

Algorithm 3 describes the full algorithm, where the update
direction is as in a gradient-descent type algorithm. The gra-
dient update direction can also be replaced with other update
directions, such as the Gauss-Newton update. A line-search is
comparing current objective value estimates to previous objec-
tive value estimates. Because the data is changing every itera-
tion, we found that a standard line-search (comparing f̃ (mk)
to f̃ (mk−1)) causes the algorithm to stall after only a few it-
erations. To address this issue, we opt for a non-monotone
line-search (see e.g., Birgin et al., 1999), which compares the
current objective to the maximum of the previous few values
(5 or 10 seem to be reasonable choices for seismic inverse
problems). The algorithm described above is summarized in
Algorithm 3.

Algorithm 3 Stochastic optimization algorithm to minimize
f (m) =

∑ns
i=1 fi(m).

iteration counter k = 1, set sufficient descent parameter c
while not converged

1a. q̃ //draw 1 or a few source samples
1b. p̃ //draw 1 or a few receiver samples

//approximate function value and gradient
2. f̃ (m) = 1

2
∑ñs

i=1 ‖P̃A(mk)
−1q̃i− d̃i‖2

2
3. g̃ =

∑ñs
i=1 gi

4a. f̃ref = { f̃k, f̃k−1, . . . , f̃k−M}
4b. γ = 1
4c. if f̃ (mk− γ g̃)< max( fref)+ c

mk+1 = mk− γ g̃ // update model estimate
k = k+1

else
γ = ηγ //step size reduction, η < 1
go back to 4c

end
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Adjoint-state Parallel reformulation

nr. of Helmholtz solves 2 per source 1 per source + 1 per receiver
Helmholtz solves per source 2 sequential 1+1 parallel
memory for fields per node 2 fields per source 1 source field or 1 receiver field

Table 1: Properties of different algorithms.

APPLYING THE (INVERSE) OF THE GAUSS-
NEWTON HESSIAN WITHOUT PDE SOLVES

By construction, the Gauss-Newton Hessian is a symmetric
positive (semi-)definite matrix, HGN ∈ CN×N , given by

HGN = J∗J =

ns∑
i=1

G(ui)
∗A−∗P∗PA−1G(ui).

The meaning of the partial derivative G(ui) =
(

∂A(m)ui
∂m

)
is as

described earlier in this abstract. The structure of the Gauss-
Newton Hessian immediately shows that the maximum rank of
HGN is ñr× ñs for each frequency. In the stochastic optimization
setting, where we work with a few sources and receivers at a
time, it means that the Gauss-Newton Hessian is usually not
full rank, because ñr× ñs ≤ N.

In this situation where the Hessian approximation is rank defi-
cient, we can use a trust-region optimization method (Nocedal
and Wright, 2000,chapter 4) or we can use a line-search algo-
rithm in combination with some quadratic regularization.

A trust-region algorithm based on the `2-norm minimizes f (m)
and leads to subproblems of the form p =−(HGN +ρIN)

−1g.
The vector p is the update direction and ρ is a scalar related
to the trust-region constraint in the equivalent subproblem
minp f (m) + p∗g + 1

2 p∗HGNp s.t. ‖p‖2 ≤ δ where δ is the
scalar trust-region radius, which is adapted every outer
iteration.

When using a line-search algorithm, regularization can make
HGN an invertible and positive-definite matrix. We do this by
minimizing the original objective with some quadratic regu-
larization added: f (m)+ ρ

2 ‖m‖
2
2 with the scalar ρ > 0. The

corresponding Gauss-Newton Hessian equals HGN +ρIN , the
scaled identity term shifts the small eigenvalues away from zero
to positive values. This regularization term does not need to
be the identity but can be any positive-definite matrix, which
gives us flexibility to include prior information on the model.
With this additional term, the Gauss-Newton update direction
is computed as p =−(HGN +ρIN)

−1g.

Both Conjugate-Gradients (CG), LSQR or other iterative least-
squares methods can be used to invert the regularized Gauss-
Newton Hessian by either inverting (HGN +ρIN) or the system

matrix
(

J√
(ρ)IN

)
. Both these methods only need matrix-

vector products that can be written as a chain of operations—
i.e. y = Jx can be computed as y = G(ui)x→ y = A−1y→
y = Py during which the PDEs are solved on the fly. When
we use iterative methods, memory requirements are low but

computational requirements are high since we need two PDEs
solves per LSQR iteration.

By directly utilizing the fields u and w, Habashy et al. (2011)
compute the action of Gauss-Newton Hessians on vectors with-
out solving PDEs. In this situation, the Hessian can be written
as

HGN =

ns∑
i=1

G(ui)
∗WW ∗G(ui).

In this alternative formulation, the action of the Gauss-Newton
Hessian can be computed PDE-free. In practice, this approach
can be much faster than solving PDEs on-the-fly, provided the
communication times of products with the distributed matrix
W are small compared to the time it would take to solve the
PDEs. In a parallel setting where W is column distributed,
matrix-vector products of the form Wy can be expensive in
terms of communication, because it requires accessing elements
of W across the dimension in which the data is distributed
across nodes. Products with W ∗, on the other hand, are much
cheaper. Since the each column of W and each ui is stored
on a different compute node, application of HGN to a vector
depends on extensive communication for 3D problems, further
investigation will be needed to determine if this approach scales.
In this case, (in exact arithmetic) it would require at most ñr×
ñs +1 CG iterations; 1 iteration per distinct eigenvalue. Each
iteration needs one matrix-vector product with W and one with
W ∗. However, CG will require a smaller number of iterations if
ρ is sufficiently large so it induces clustering of the eigenvalues,
leading to a smaller number of distinct eigenvalues and therefor
CG iterations.

To avoid significant parallel communication at every CG/L-
SQR iteration and shift the communication cost to a single
computation, we can directly invert HGN + ρIN by applying
the Sherman-Morrison-Woodbury identity. This results in the
following expression for the inverse:

(HGN +ρIN)
−1 =

1
ρ

IN −
1
ρ

G(u)∗W (Iñrñs +W ∗G(u)
1
ρ

G(u)∗W )−1W ∗G(u)
1
ρ
.

The only matrix that needs to be inverted now equals (Iñrñs +
W ∗G(u) 1

ρ
G(u)∗W )∈Cñrñs×ñrñs . The inverse of this very small

matrix can always be computed explicitly. The full inverse
Hessian is not formed, but applied as a chain of matrix-vector
products. It is nontrivial to implement this communication
efficient, given W is distributed over its columns. We leave
evaluation of this option for future research.
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NUMERICAL EXAMPLE

This frequency domain seismic waveform inversion example
is based on algorithm 3 and uses only gradient and objective
information. The true model is the 2D Marmousi model with
a water layer of 200m on top. The sources are 50m apart and
located near the water surface. The receivers are located on
the ocean floor and there is also 50m distance between the
receivers. A Ricker wavelet with 10Hz peak frequency was
used. We employ a frequency continuation strategy, starting
with 3Hz data, ending with 10Hz data. The true, initial and final
models are shown in Figure 1 . The result using 8 sources and
8 receivers is a bit noisy, but the larger scale characteristics are
at the correct locations. There is little difference between the
result with all sources and all receivers active at every iteration,
and the one where 16 sources and receivers are used. The
results using 8 and 16 sources/receivers take the same time
to compute, but the number of compute nodes is 8+8 versus
16+16. The result using all sources and receivers takes twice
as long to compute, because it is based on the sequential adjoint
state algorithm. Algorithm 2 cannot be used in this case, as it
would require an excessive number of compute nodes.

CONCLUSIONS

In this work we presented a parallel reformulation of the sequen-
tial adjoint-state method to compute the gradient of a nonlinear
least-squares objective function. The reformulation enables
parallel solution of the forward and adjoint PDE. The proposed
algorithm requires one PDE solve per source and one per re-
ceiver. This results in a 2× speedup if the number of sources
plus the number of receivers is equal to the number of PDEs
that can be solved in parallel on the available computational
resources. The computations are the same as the adjoint-state
method requires: solutions of linear systems involving the PDE,
A(m), and its adjoint A(m)∗. A byproduct of the parallelized
adjoint-state algorithm is the availability of fields which can
be used to apply the Gauss-Newton Hessian without the need
to recompute wavefields. A practical stochastic optimization
strategy with source/receiver randomization and subsampling
is used to show good waveform inversion results can be ob-
tained with only a few active sources and receivers at every
full-waveform inversion iteration. Future work will focus on
large scale 3D waveform inversion problems. In 3D, the main
question is how many sources and receivers are required at each
FWI iteration.
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final velocity model, 16 sources, 16 receivers
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final velocity model, 8 sources, 8 receivers
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final velocity model, all sources and receivers
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Figure 1: True, inital and estimated models for various subsam-
pling ratios.
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