Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2016 SLIM group @ The University of British Columbia.

Time jittered marine acquisition: a rank-minimization approach for 5D source separation

Rajiv Kumar

Time jittered marine acquisition: a rank-minimization approach for 5D source separation

Rajiv Kumar, Shashin Sharan, Haneet Wason, Felix J. Herrmann

Motivation

How to minimize costs of seismic acquisition? Solution:

randomize sampling w/ insights from Compressive Sensing to lower cost

New paradigm:

- give up on dense acquisition
- sample coarsely at random
- works as long as we know where we were in the field

Compressive Sensing = increased acquisition productivity

Compressive time-lapse marine acquisition W-13: Low cost geophysics: How to be creative in a cost-challenged environment

Randomized jitter sampling in marine

Economical 3D OBN acquisition

Observed grid (m)	Recovered grid (m)	Subsampling %	Economical gain
25	12.5	50	2X
25	6.25	75	4X
25	3.125	90	8X - 9X

Time-jittered acquisition

regularly sampled spatial grid

continuous recording START

OBC / OBN

continuous recording STOP

Acquisition setup speed of source vessel = 5 knots ~ 2.5 m/s

Observed v/s recovered

Observed data @ 25 m flip-flop (overlapping & missing shots)

8

Separation + Interpolation (recovered grid @ 6.25m)

Methodology

[Candès and Plan, 2009]

Matrix completion

Successful reconstruction scheme

- exploit structure
 low-rank / fast decay of singular values
- sampling
 - randomness increases rank in "transform domain"
- optimization
 - via rank-minimization (nuclear norm-minimization)

Low-rank structure conventional 5D data, monochromatic slice, Sx-Sy matricization

Low-rank structure conventional 5D data, monochromatic slice, Sx-Rx matricization

[Candès and Plan, 2009]

Matrix completion

Successful reconstruction scheme

- exploit structure
 - low-rank / fast decay of singular values

sampling

- randomness increases rank in "transform domain"
- optimization
 - via rank-minimization (nuclear norm-minimization)

Low-rank structure time-jittered data, monochromatic slice, Sx-Sy matricization

Low-rank structure time-jittered data, monochromatic slice, Sx-Rx matricization

[Candès and Plan, 2009]

Matrix completion

Successful reconstruction scheme

- exploit structure
 - low-rank / fast decay of singular values
- sampling
 - randomness increases rank in "transform domain"
- optimization
 - via rank-minimization (nuclear norm-minimization)

Rank minimization

$$\min_{\mathbf{X}} rank(\mathbf{X}) s.t.$$

number of singular values of ${f X}$

expensive (search over all possible values of rank)

$\|\mathcal{A}(\mathbf{X}) - \mathbf{b}\|_2 \le \epsilon$

Rank minimization

$$\min_{\mathbf{X}} rank(\mathbf{X}) s.t.$$

number of singular values of ${\bf X}$

Nuclear-norm minimization [Recht et. al., 2010]

$$\min_{\mathbf{X}} ||\mathbf{X}||_* \quad \text{s.t.}$$

sum of singular values of \mathbf{X}

expensive (search over all possible values of rank)

$\|\mathcal{A}(\mathbf{X}) - \mathbf{b}\|_2 \le \epsilon$

convex relaxation of rank-minimization

$\|\mathcal{A}(\mathbf{X}) - \mathbf{b}\|_2 \le \epsilon$

Matrix-Completion framework

Restriction operator is constant across frequencies

Perform matrix-completion across frequencies in parallel

5D Jittered marine acquisition

Restriction operator is non-separable
 combination of time-shifting and shot-jittered operator

Can't perform matrix-completion over independent frequencies
 reformulate nuclear-norm minimization over temporal-frequency domain

Rank-minimization problem

+ Let $X \in \mathbb{C}^{n_f \times n_{rx} \times n_{sx} \times n_{ry} \times n_{sy}}$ be the conventional 5D seismic data volume represented as a tensor.

• Given a set of measurements b, aim is to solve

where

$$||\mathcal{A}(\mathbf{X}_f) - \mathbf{b}||_2^2 \le \sigma$$

$\|\mathbf{X}_f\|_* = \sum \lambda_i = \|\lambda\|_1$

m

i=1

Sampling-measurement operator

• \mathcal{A} is the transform-sampling operator defined as

$\mathcal{A}(.) = \mathbf{M}\mathbf{F}^H \mathcal{S}^H(.)$

 \mathbf{M} \mathbf{F}^{H}

 \mathcal{S}^{H}

time-jittered operator inverse Fourier transform along frequency axis rank-revealing transform domain

Rennie and Srebro 2005, Lee et. al. 2010, Recht and Re 2011 **Factorized formulation**

 $\mathbf{L} \in \mathbb{C}^{\mathbf{n_f} imes \mathbf{n_{rx}} imes \mathbf{n_{sx}} imes \mathbf{n_k}}$

 $\mathbf{R} \in \mathbb{C}^{\mathbf{n_f} imes \mathbf{n_{ry}} imes \mathbf{n_{sy}} imes \mathbf{n_k}}$

Factorized formulation

Costly SVD's

Nuclear norm satisfies

where $\|\cdot\|_F^2$ is sum of squares of all entries

Choose rank k explicitly & avoid costly SVD's

$\sum_{i}^{n_f} \|\mathbf{D}_{\mathbf{j}}^{(\mathbf{i})}\|_* \leq \sum_{\mathbf{i}}^{\mathbf{n_f}} rac{1}{2} \|\mathbf{L}_{\mathbf{j}}^{(\mathbf{i})} \mathbf{R}_{\mathbf{j}}^{(\mathbf{i})}\|_{\mathbf{F}}^2$ [Rennie and Srebro 2005]

How to choose the rank parameter?

Typical abridged result from low-rank matrix recovery theory:

If $\mathcal{A}: \mathbb{C}^{n \times m} \mapsto \mathbb{C}^k$ is a random linear operator (e.g., Ω chosen randomly, subgaussian), then we can recover a rank- \mathcal{T} matrix via nuclear norm minimization if

$$k \ge Cr \max(n$$

with high probability.

 $L,m)\log(\max(n,m))$ [Candes and tao 2009]

How to choose the rank parameter?

In our case: $k = .25 \cdot nm$, where 0.25 is subsampling ratio, n = m = 4141

(with C = 1 and rounding) $\implies r \leq 100$

Choose upper bound as rank.

- $k \ge Cr \max(n, m) \log(\max(n, m))$

Experimental results

Acquisition setup

3D BG Compass model

Acquisition information

- IOs temporal length
- 25 m flip-flop shooting
 - source-sampling ranges from 25 m to 175 m

 - acquired 400 sources
- ► 10201 receivers
- Ricker wavelet with central frequency of 20 Hz

effective 50 m source sampling for each airgun array

▶ size of the recovered 5D seismic data volume is 0.5 TB

Optimization information

- ► 200 iterations, computational time 42 hours
- Separation + interpolation @ 6.25 m grid recovered 1600 sources

Parallelized factorization framework over sources and receivers

Computational Environment

SENAI Yemoja cluster

- 30 nodes, 128 GB RAM each, 20-core processors
- 300 Parallel Matlab workers (10 per node), multithread full core utilization

Conventional data common-shot gather, @6.25 m source sampling

250

Time-jittered continuous record @ 25m flip-flop shooting, blended & missing shots

250

Adjoint of sampling-operator common-shot gather

After Source-Separation common-shot gather, 21dB signal-to-noise ratio

After Source-Separation preserved late-arrivals energy

Residual

coherent energy can be reconstructed using 2nd pass over data

250

IOx magnified

reconstructed late-arrivals

Take-away message

- ▶ **4X** up-sampling (@ 6.25m) & saving in acquisition time
- ► size of final recovered data volume is **0.5 TB** no need to save fully sampled seismic data volume
- ▶ save L and R factors

 - compression rate is 98% size of final compressed 5D seismic volume is ~I3 GB

Conclusions

Low-cost 3D OBN acquisition

expandable to time-lapse OBN acquisition

Factorization based rank-minimization framework can handle large-scale seismic data

Embarrassingly parallel framework

Acknowledgements

support of the member organizations of the SINBAD Consortium.

This research was carried out as part of the SINBAD project with the

Acknowledgements

The authors wish to acknowledge the SENAI CIMATEC Supercomputing Center for Industrial Innovation, with support from BG Brasil, Shell, and the Brazilian Authority for Oil, Gas and Biofuels (ANP), for the provision and operation of computational facilities and the commitment to invest in Research & Development.

Thank you for your attention

