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SUMMARY

The data of full-waveform inversion often contains noise, which
induces uncertainties in the inversion results. Ideally, one would
like to run a number of independent inversions with different
realizations of the noise and assess model-side uncertainties
from the resulting models, however this is not feasible because
we collect the data only once. To circumvent this restriction,
various sampling schemes have been devised to generate an
ensemble of models that fit the data to within the noise level.
Such sampling schemes typically involve running multiple in-
versions or evaluating the Hessian of the cost function, both of
which are computationally expensive. In this work, we propose
a new method to quantify uncertainties based on a novel for-
mulation of the full-waveform inversion problem – wavefield
reconstruction inversion. Based on this formulation, we formu-
late a semidefinite approximation of the corresponding Hessian
matrix. By precomputing certain quantities, we are able to
apply this Hessian to given input vectors without additional
solutions of the underlying partial differential equations. To
generate a sample, we solve an auxiliary stochastic optimization
problem involving this Hessian. The result is a computationally
feasible method that, with little overhead, can generate as many
samples as required at small additional cost. We test our method
on the synthetic BG Compass model and compare the results
to a direct-sampling approach. The results show the feasibility
of applying our method to computing statistical quantities such
as the mean and standard deviation in the context of wavefield
reconstruction inversion.

INTRODUCTION
Full-waveform inversion (FWI) aims to reconstruct the Earth’s
subsurface velocity structure from data measured at the surface
(Tarantola and Valette, 1982a; Virieux and Operto, 2009). The
measured data of FWI often contains noise that leads to un-
certainties in data. As a result of fitting this noisy data, these
uncertainties propagate through the inversion procedure, which
result in uncertainties in the final model (Malinverno and Briggs,
2004). The conventional approach to study these random fluctu-
ations is to use the Bayesian inference approach to formulate the
posterior distribution of the unknown parameter and generate,
say, mean and standard deviation plots (Kaipio and Somersalo,
2004). Unfortunately the FWI is a strongly non-linear inverse
problem and the forward problem of FWI is computationally
expensive, which leads to difficulties in the explicit computa-
tion of the parameter space distribution and in calculating the
mean and pointwise variance of velocity (Tarantola and Valette,
1982b).

Wavefield reconstruction inversion (WRI) (van Leeuwen and
Herrmann, 2013; Peters et al., 2014) is a new approach to solve
wave-equation based inversion problems. Unlike conventional

FWI, which at each iteration solves the wave-equation exactly,
WRI considers the wave-equation as a `2-norm penalty term in
the objective function, weighted by a penalty parameter. For
WRI, when either the velocity or the wavefield is fixed, the prob-
lem becomes a linear fitting problem in the other variable. As a
result, WRI is “less non-linear” compared to FWI. Additionally,
the WRI enjoys an approximate diagonal Hessian of the objec-
tive function that does not require additional partial-differential
equation (PDE) solves (van Leeuwen and Herrmann, 2013).
Given these advantages of WRI, Fang et al. (2015) proposed a
posterior distribution based on WRI and produced samples with
an Gaussian distribution based on the diagonal approximation
of the Hessian.

The diagonal approximation of the Hessian utilized by Fang
et al. (2015) does not account for the statistical correlations of
the wavefields with the model vectors, resulting in a poor ap-
proximation of the probability density when the penalty param-
eter is large. In this work, we propose to use a more accurate
semidefinite Hessian approximation (van Leeuwen and Her-
rmann, 2015) to approximate the posterior distribution. This
Hessian does involve additional PDE-solves, but the necessary
wavefields can be easily precomputed and stored for later use.
Thus, we can still apply the Hessian to given input vectors at
little additional computational cost.

The conventional approach to draw samples from a Gaussian
distribution consists of two steps: (1) minimize the negative
logarithm function of the posterior distribution to obtain the
maximum a posteriori (MAP) estimate, i.e., the point that max-
imizes the posterior probability; (2) compute the Cholesky
factor of the covariance matrix at the MAP estimate and use
it to draw samples (Martin et al., 2012). In practice, the latter
step requires us to form the full Hessian matrix explicitly and is
computationally expensive (Rue, 2001). In this work, we utilize
the so-called randomize-then-optimize (RTO) method (Solonen
et al., 2014), which generates a sample from a Gaussian distri-
bution by solving a stochastic least-squares problem involving
the covariance matrix. By using our PDE-free Hessian, we can
solve these least-squares problems efficiently using standard
solvers such as CGLS or LSQR (Paige and Saunders, 1982).
This results in a scalable algorithm for generating samples from
the posterior distribution.

POSTERIOR DISTRIBUTION FOR WRI
Tarantola and Valette (1982b) first introduced the Bayesian
approach to the seismic inverse problem and proposed the gen-
eral framework of statistical FWI. Based on the Bayes’ law,
for a model parameter m with ngrid points, the posterior dis-
tribution ρpost(m|d) of m given data d consisting nsrc shots
and nfreq frequencies is proportional to the product of the likeli-
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hood distribution ρlike(d|m) and the prior distribution ρprior(m)
yielding:

ρpost(m|d) ∝ ρlike(d|m)ρprior(m). (1)

In other words, the most probable model vectors m that cor-
respond to our data d are those that likely correspond to our
prior beliefs about the underlying model, irrespective of data,
(i.e.,ρprior(m)) as well as those that generate data d that are
probabilistically consistent with our underlying physical and
noise model (i.e., ρlike(d|m)). This formulation allows us to
explicitly write down expressions for the last two terms, while
simultaneously ignoring the normalization constant hidden in
∝. Computing this constant would otherwise involve high di-
mensional integration, which is challenging both numerically
and theoretically.

With the assumption that the noise on the data obeys a Gaussian
distribution with mean 0 and variance σ2, we arrive at the
following posterior distribution for FWI (Tarantola and Valette,
1982b; Martin et al., 2012):

ρpost(m|d) ∝ exp(−1
2

σ
−2‖PA(m)−1q−d‖2)ρprior(m). (2)

In this expression, P, A and q represent the receiver projection
operator, Helmholtz matrix, and source term, respectively. We
omit the dependence on source and frequency indices to ease
the notation. As a result of its non-linear dependence on m
through A(m)−1q, this density is not easily approximated by
a Gaussian distribution. Although samples could in principle
still be generated from such complicated distributions, this is
computationally expensive (Tarantola and Valette, 1982b).

To avoid these difficulties, Fang et al. (2015) considered a
different formulation for FWI where both the wavefields and
model are unknowns. This formulation leads to the following
posterior distribution:

ρpost(m,u) ∝ exp(− 1
2
(σ−2‖Pu−d‖2

−λ
2‖A(m)u−q‖2))ρprior(m).

(3)

Here, the additional parameter λ is a penalty parameter to
balance the data and PDE misfit. Contrary to eliminating the
wave-equation as a constraint by solving it (Virieux and Operto,
2009) as in Equation (2), in (3) we treat the wave-equation
as additional prior information. It is readily observed that the
distribution is Gaussian in u for fixed m and vice versa. This
suggests that this distrubution is more amenable to a Gaus-
sian approximation than the one stated in Equation (2). Un-
fortunately the search space of problem (3) is significantly
larger than problem (2), i.e, from ngrid unknown variables to
ngrid +ngrid ∗nsrc ∗nfreq unknown variables. To reduce the di-
mensionality, Fang et al. (2015) proposed to utilize the variable
projection method (van Leeuwen and Herrmann, 2013) to de-
fine the following conditional distribution:

ρpost(m,u(m)) ∝ exp(− 1
2
(σ−2‖Pu(m)−d‖2

−λ
2‖A(m)u(m)−q‖2))ρprior(m),

(4)
where the wavefield u is generated by solving the following

data-augmented system:(
λA(m)

σ−1P

)
u =

(
λq

σ−1d

)
. (5)

Here, we can observe that for given m, the solution u of the
least-squares problem (5) maximizes the posterior distribu-
tion (3). In this work, we follow Fang et al. (2015) and quantify
uncertainties for WRI based on the posterior distribution (4).

METHODOLOGY OF QUANTIFYING UNCERTAINTY
Gaussian approximation — The posterior distribution (4) is
not Gaussian, but can be approximated by a Gaussian distribu-
tion locally around its maximum. The model that maximizes
the posterior density is called the maximum a posterior (MAP)
estimate, mMAP. In this work, we use the following Gaussian
distribution ρGauss(m) to approximate the posterior distribu-
tion (4):

ρGauss(m) ∝ exp(−(m−mMAP)
T H(m−mMAP)), (6)

where H represents the Hessian matrix of the negative logarithm
function − log(ρpost(m)) of the posterior distribution (4). As
discussed by Martin et al. (2012), the Hessian H consists two
parts: the Hessian of the WRI misfit Hmis and the Hessian
related to the prior term Hprior. Fang et al. (2015) proposed to
approximate the Hessian Hmis by a diagonal matrix that does
not require additional PDE solves to form (van Leeuwen and
Herrmann, 2013). However, this diagonal approximation does
not include terms that statistically correlate the wavefield to the
velocity model. As a result, the approximation becomes poorer
as the penalty parameter λ increases. In this work, we propose
to use the following semidefinite Hessian (van Leeuwen and
Herrmann, 2015), which approximates these terms,

Hmis = σ
−2GT A−T PT (I+

1
λ 2σ2 PA−1A−T PT )−1PA−1G.

(7)
In this expression, G = ∂Au

∂m and T indicates the adjoint opera-
tion. In practice, since we only need to compute the Hessian
to form the Gaussian approximation (6) once at the very begin-
ning of the inversion, we precompute and store the wavefields
u and the term A−T PT . We can compute and store these terms
in parallel to accelerate the computation and avoid saturating
a single computational node’s memory. Once all these wave-
fields are computed and stored, the matrix-vector product with
this Hessian can be performed extremely quickly, since it only
involves efficient products of matrices and vectors and does
not require additional PDE solves. Moreover, we do not store
the entire ngrid×ngrid matrix Hmis explicitly, only the factors
above that allow us to form matrix-vector products. As a result,
we can utilize any iterative least-squares solver, including CG
and LSQR, to invert the Hessian.

In order to test the accuracy of this approximation (6), we
compared the behavior of the negative logarithm function of
the posterior distribution (4), ft = − log(ρpost(m)), and that of
the Gaussian distribution, fq = − log(ρGauss(m)), around the
MAP point with both small λ , λ = 1e0 and large λ , λ = 1e6, as
shown in Figure 1. We first generate a random perturbation dm,
with a maximum absolute value of 0.8km/s. Next, we calculate
the objective values ft(m+αdm) and fq(m+αdm) for α ∈
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[−1 : 0.1 : 1]. In both cases, the negative logarithm function
of the Gaussian approximation closely matches that of the true
posterior distribution, which indicates that our approximation
is accurate.
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Figure 1: The comparison of the negative logarithm function
of the Gaussian approximation fq(m+αdm) with the Hessian
and the posterior distribuion ft(m+αdm) corresponding to a)
λ = 1e0 and b) λ = 1e6. The parameter α ranges from −1 to
1. The maximum absolute value of the random perturbation
vector is 0.8km/s.

Randomize then optimize method — Given our Gaussian ap-
proximation of the posterior distribution, a standard procedure
to generate samples from such a distribution is to compute the
Cholesky factor of its covariance matrix, followed by applying
this factor to random noise (Rue, 2001). Unfortunately, since
the size of the Hessian is ngrid×ngrid, and ngrid is often in the
range of 106 or higher, we are unable to store the Hessian ex-
plicitly, let alone compute its Cholesky factors, which is also
computationally expensive.

The randomize-then-optimize (RTO) method (Solonen
et al., 2014) circumvents this problem and allows us
to draw samples from a given Gaussian distribution
ρ(m) ∝ exp(−(m−mMAP)

T H(m−mMAP)), by solving the
following stochastic optimization problem (Solonen et al.,
2014),

min
m
‖Lm− (LmMAP + r)‖2 . (8)

Here, L is any full rank matrix that satisfies H = LT L and r is
a random realization from the Gaussian distribution N (0,I ).

Fortunately, by the construction of our approximate Hessian (7),
we have the following factorization of Hmis:

Hmis = LT
misLmis,

Lmis = σ
−1(I+

1
λ 2σ2 PA−1A−T PT )−

1
2 PA−1G.

(9)

In this expression, computing the inverse square-root of I+
1

λ 2σ 2 PA−1A−T PT is computationally tractable because it in-
volves a nrcv× nrcv matrix, which is much smaller than the
ngrid× ngrid matrix Hmis. With the assumption that all shots
share the same receivers, we only need to compute this ma-
trix once for each frequency. Without loss of generality, we
assume that the Hessian of the prior term has a simple struc-
ture (e.g., Low rank and sparse) so that we can compute its
square root Lprior, where Hprior = LT

priorLprior, with a low com-
plexity (Solonen et al., 2014). Under these assumptions, we

are able to utilize the RTO method (8) to draw samples from
the Gaussian distribution N (mMAP,H−1) through replacing

terms L, LmMAP and r in (8) by
(

Lmis
Lprior

)
,
(

LmismMAP
LpriormMAP

)
,

and
(

rmis
rprior

)
. Here, rprior is a realization from Gaussian distri-

butions N (0,Ingrid×ngrid). rmis is a realization from Gaussian
distributions N (0,Inrcv×nrcv) for each shot and frequency.

NUMERICAL EXPERIMENTS
In this section, we test the feasibility of our uncertainty quan-
tification method in a realistic seismic exploration setting. We
consider the BG compass model (Li et al., 2012; Fang et al.,
2015), which enjoys a large degree of variability constrained
by well data. The true model and initial model are shown in
the Figure 2. The model size is 2km× 4.5km. We carry out
simulations with 91 shot and 451 receiver positions sampled
at 50m and 10m, respectively, yielding a maximum offset of
4.5km. We place all shots and receivers at the depth z = 40m.
According to Li et al. (2012), we carry out the inversions se-
quentially in 10 frequency bands ranging from [2, 3, 4]Hz to
[29, 30, 31]Hz for the sake of avoiding local minima and im-
proving convergence. The ratio of the noise and signal in the
data is 1% as shown in the Figure 3 and the noise level σ is
calculated correspondingly. We select λ = 1000σ according to
the largest singular value of σ−1A−T PT with the initial model
in Figure 2b (van Leeuwen and Herrmann, 2015). We utilize the
initial model as the prior model mprior, as is standard (Martin
et al., 2012):

ρprior(m) ∝ exp(−γ
−2‖m−mprior‖2). (10)

Here, we select the standard deviation γ = 2km/s, which is
larger than the maximum difference 1.5km/s between the ini-
tial model and the true model.
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Figure 2: The true model (a) and the initial model (b).

To obtain the MAP estimate, we first solve an optimization
problem that corresponds to minimizing the negative logarithm
function of the posterior distribution (4), i.e., a standard WRI
problem. The result is included in Figure 4a. Next, we compute
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Figure 3: The real part of 5Hz data with and without noise for
the shot located at x = 2500m.

the Hessian at this MAP estimate according to the Equation (7).
Finally, we draw 1000 samples by the RTO method (8) to calcu-
late the standard deviation (STD) of the velocity model at each
grid point, shown in Figure 4b. We can observe that the small
level of uncertainties in the data — the 1% noise — leads to
the small STD, which has a maximum value of 0.1km/s. In the
shallow area of the model, the STD is small, while in the deep
part, it becomes large, which illustrates the uncertainties in the
deep part are larger than in the shallow area. This behavior
matches the fact that, compared to velocity at the deep area, the
velocities in the shallow regions provide a larger contribution to
the measured data. In order to validate these confidence inter-
vals, we generate 1000 noisy realizations, add them to the data,
and use them to generate 1000 independent inversion results,
which should be samples from the true posterior distribution
(Bardsley et al., 2015). We calculate the STD and mean value of
these 1000 inversion results and compare to that we obtained by
our approach (Figure 5) at the cross section x = 1000m. The
mean values obtained by the two approaches match each other
nearly exactly. The STDs obtained by the two approaches are
not as close as their corresponding mean values, but still remain
reasonably stable. Considering the assumptions we made for
our approach, these differences between the computed standard
deviations are acceptable.

CONCLUSION
In this work, we proposed a semidefinite Hessian for WRI
and applied it to perform uncertainty quantification. By pre-
computing and storing the necessary wavefields, we are able
to compute the matrix-vector product of the Hessian without
additional PDE solves. We used the randomize-then-optimize
technique to draw samples from an Gaussian distribution that
approximates the posterior distribution, and in doing so avoid
forming the Hessian explicitly. As one would expect, our nu-
merical experiment produces small uncertainties in the shallow
part and large uncertainties in the deep part of the model, which
matches the fact that the observed data is more sensitive to
the velocity perturbation in the shallow part than in the deeper
part. The STD and mean value obtained by our approach are
close to those computed from the 1000 inversion results, which
shows that our approach produces reasonable uncertainty anal-
ysis. Storing all these precomputed wavefields may still be a
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Figure 4: (a) MAP estimate and (b) standard deviation.
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Figure 5: The STD and mean value obtained by 1000 inversion
results and our Gaussian approximation. (a) Standard deviation
and b) mean value.

practical barrier to extending this method to the 3D case. Given
the number of approximations made in the derivation of this
method, further study is warranted on the approximation of the
underlying density by the Gaussian density.
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