
A Unified 2D/3D Software Environment for Large Scale Time-Harmonic Full Waveform Inversion
Curt Da Silva*, Felix Herrmann
Seismic Laboratory for Imaging and Modeling (SLIM), University of British Columbia

SUMMARY

Full-Waveform Inversion is a costly and complex procedure for
realistically sized 3D seismic data. The performance-critical
nature of this problem often results in software environments
that are written entirely in low-level languages, making them
hard to understand, maintain, improve, and extend. The unread-
ability of such codes can stymie research developments, where
the translation from higher level mathematical ideas to high
performance codes can be lost, inhibiting the uptake of new
ideas in production-level codebases. We propose a new soft-
ware organization paradigm for Full-Waveform Inversion and
other PDE-constrained optimization problems that is flexible,
efficient, scalable, and demonstrably correct. We decompose
the various structural components of FWI in to its constituent
components, from parallel computation to assembling objective
functions and gradients to lower level matrix-vector multipli-
cations. This decomposition allows us to create a framework
where individual components can be easily swapped out to suit
a particular user’s existing software environment. The ease of
applying high-level algorithms to the FWI problem allows us
to easily implement stochastic FWI and demonstrate its effec-
tiveness on a large scale 3D problem.

INTRODUCTION

Given the enormous complexity associated to Full-Waveform
Inversion (FWI) in terms of computational time and resources,
as well as sheer code development effort, often seismic software
environments are written completely in a mix of C, Fortran,
and assembly language. Although these low-level languages
are extremely efficient, they are also very cumbersome and
can facilitate unintentional errors, and often result in codebases
that are large, poorly designed and documented, and hard to
maintain. From a research point of view, it can be extremely
difficult for a researcher to apply and integrate their higher
level algorithmic ideas to realistically sized seismic problems.
Although these codes may be efficient, they are seldom tested to
ensure correctness and the link between the software as-written
and the mathematical underpinnings of the problem can be lost.
Ultimately, hard to use and debug code can inhibit the uptake of
promising research ideas into production-quality environments.

In this abstract, we propose a new organizational framework
for FWI that adheres to modern software engineering principles
and is flexible, efficient, and scalable. In particular, using this
approach allows us to implement seemingly complicated to pro-
gram mathematical algorithms such as stochastic optimization
with batching in a simple and provably correct manner. The
core of our software is written in Matlab, which is a program-
ming language that allows one to write linear algebra operations
in a clear and concise manner while calling efficient software
packages such as BLAS and LaPACK and custom C/Fortran
routines “under the hood” for solving the associated partial dif-

ferential equations (PDEs). Matlab is useful precisely because
it is adept at expressing high-level ideas in code and it calls
other libraries that are more efficient for actual computation.
This idea of separating the structural or conceptual compo-
nents of the code from computational components will help
us achieve the outlined goals in this software framework. We
also aim to be flexible in our design, such that it is straightfor-
ward and requires little effort to integrate new components (e.g.,
linear solvers, preconditioners, Helmholtz discretizations, data
distribution paradigms, etc.) in to the entire codebase, while
simultaneously being provably correct (i.e., satisfying Taylor er-
ror estimates for the gradients , passing adjoint tests). Although
we focus on frequency-domain methods, an extension of this
approach to the time domain is also possible. We separate the
parallelization from the serial computations, which allows us
to test the serial component of our code separately and apply
our code to large scale problems as easily as for small scale test
problems. This decoupling also allows us to scale this approach
to cloud-based computing or other heterogeneous large scale
computing platforms.

Compared to the Rice Vector Library (Padula et al. (2009)),
our approach is much more specific to PDE-constrained opti-
mization problems, rather than a general multipurpose scientific
computing library, and we describe more of an organizational
point of view of the software rather than an implementation-
specific library. The framework described in Symes et al. (2011)
is similar in philosophy to our approach, but our emphasis is
on flexibility. Moreover, by using Matlab, we also take advan-
tage of using extremely efficient function handles calls, which
makes code significantly more aligned with the mathematics
of various algorithms, such as the multi-level Helmholtz pre-
conditioners of Lago and Herrmann (2015), which would be
very difficult to implement in C++. The Seiscope library (Mé-
tivier and Brossier (2016)) consists of a number of high-level
optimization algorithms implemented in Fortran. For FWI prob-
lems, the dominant costs result from the PDE solves rather than
the higher level algorithmic components themselves. Given
its linear algebraic underpinnings, Matlab is well suited for
expressing optimization algorithms in a compact and readable
manner. As a result, it is more technically reasonable to write
the higher level algorithms in Matlab and leave the lower-level
components to languages such as C and Fortran.

SOFTWARE ORGANIZATION

The standard adjoint-state method of full-waveform inversion
problems involves solving

min
m

∑
i

1
2
‖PHi(m)−1qi−Di‖2

2, (1)

where m is the model vector, P is the linear operator that re-
stricts the wavefield to the receiver locations, H(m)u = q is the

Unified 2D/3D Software Framework for FWI

Helmholtz equation with source q, and D is the observed data,
where i runs over sources and all frequencies (of which there
are ns and n f , respectively).

1

PDEfunc_dist - Parallel distribution

misfit_setup - Objective function setup layer

PDEfunc - Serial computation

opHelmholtz - SPOT operator

C implementation of stencil-free MVP linsolve - Managing linear solver options
H*q H\q

Figure 1: Software Hierarchy.

We take a hierarchical approach to the design of this environ-
ment, as shown in Figure 1. At the topmost level, our routine
misfit_setup is responsible for subsampling and distributing
D according to specified source and/or frequency indices, and
returns a function handle to an objective function, a gradient
vector, and an optional Hessian operator. This objective func-
tion handle is suitable for black-box optimization routines such
as L-BFGS or Newton-based methods. This approach allows
us to implement algorithms such as frequency continuation or
randomized source/frequency selection in an easy manner by
specifying the indices i with which we want to work at any
given time. We employ the SPOT (E. van den Berg (2014))
methodology, which allows us to treat function calls as linear
operators in Matlab. The Hessian operator (either full or Gauss-
Newton) in this case is merely a cleverly disguised function
handle, not an explicit matrix. Whenever we apply the Hes-
sian to a vector by writing, say, Hess ∗ v, Matlab calls lower
level functions to compute the Hessian-vector product and solve
the corresponding PDEs, while never forming the full matrix
explicitly.

The next two levels of the hierarchy consist of PDEfunc_dist
and PDEfunc. PDEfunc is the general purpose serial compu-
tation function that returns various quantities depending on
solutions of the Helmholtz equation, including forward mod-
elled data, objective and gradient values, outputs of demigration
and migration, as well as Gauss-Newton and full Hessian vec-
tor products. This component of the framework is responsible
for “assembling” these various quantities depending on wave-
fields in the correct manner, as well as relying on lower level
functions to actually compute these solutions. At this stage
in the hierarchy, we are primarily concerned that we are ar-
ranging these component pieces properly to output the correct
result, rather than dealing with the various intricacies of how
to solve the Helmholtz equation iteratively. PDEfunc_dist
simply computes the result of PDEfunc in an embarrassingly
parallel manner, distributed over sources and frequencies, using
Matlab’s distributed arrays, which are based on the Message
Passing Interface (MPI) paradigm. The output is then summed
across all of the workers, due to the sum-structure of the objec-
tive function in (1).

In order to validate our methods, we use the fact that, for a

smooth function f (m) and an arbitrary perturbation δm and
step size h, by Taylor’s theorem, we have that the first and
second order Taylor errors behave as

f (mh)− f (m)−h∇ f (m)T
δm = O(h2)

f (mh)− f (m)−h∇ f (m)T
δm− 1

2
h2(δm)T

∇
2 f (m)δm = O(h3),

respectively, where mh = m+ hδm. Our numerical codes do
indeed reflect this theoretical behaviour for a particular range of
h (modulo the effects of roundoff error and inaccuracies in the
linear system solves), as shown in Figure 2. We also pass the
adjoint test, which ensures that the relation 〈y,Ax〉= 〈AT y,x〉
holds for the software implementation of a linear operator A
(e.g., linearized Born-scattering, Hessian operators), and ap-
propriately sized vectors x and y, although we omit it here for
brevity. Optimization algorithms exploiting smoothness proper-
ties rely on these two relationships, and lacking these properties
in our codes can lead to arbitrary stalling in the optimization
algorithms or can generate spurious artifacts in our results.
Having our code pass these tests mitigates the possible source
of issues when solving FWI problems, since our codebase is
consistent with the mathematics of the problem.

10 -5 10 -4 10 -3 10 -2 10 -1 10 0

h

10 -16

10 -14

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

10 2

10 4
T

ay
lo

r
er

ro
r

Zeroth order
First order
Second order
O(h)

O(h2)

O(h3)

Figure 2: Numerical Taylor error behaviour

ITERATIVE INVERSION

Further down the hierarchy, we are concerned with the actual
numerical solutions of the Helmholtz equation, which is very
challenging for large wavenumbers. In particular for 3D, the
large memory requirements of the model vectors and wavefields
preclude us from using direct methods to solve the Helmholtz
equation or even forming the matrix explicitly. The Helmholtz
equation has both negative and positive eigenvalues for large
wavenumbers, which makes it challenging to use off-the-shelf
iterative solvers as well as in the design of preconditioners.

To discretize the Helmholtz operator, we use a stencil-based
matrix-vector product written in C, with a corresponding MEX
interface to Matlab, which implements the 27-pt compact sten-
cil of Operto et al. (2007) along with its adjoint. This implemen-
tation is multi-threaded along the z-coordinate using OpenMP

Unified 2D/3D Software Framework for FWI

threads and is the only ‘low-level’ component of this software
framework. The existence of these optimized routines are hid-
den from the rest of the Matlab code by being wrapped in the
SPOT operator opHelmholtz. Again, this SPOT approach al-
lows us to treat function calls as linear operators. When we
write code like H ∗ v in Matlab, this implicitly calls the fast
C-based matrix-vector multiply, which allows us to use existing
linear solvers without exposing the lower level functions under-
neath. This delineation of very efficient, low-level code from
the higher-level components in Matlab allows us to maintain
readable and easy to debug code. For 2D problems, we employ
the 9pt optimal discretization of Chen et al. (2013).

We employ a variant of the recursive multigrid preconditioner
of Lago and Herrmann (2015) wherein all of the alternative
smoother and coarse-grid solvers have been replaced by GM-
RES, displayed in Figure 3. We found that the solvers proposed
by the other authors such as CGMN were not easily parallelized
for stencil-free codes, despite having potentially better con-
vergence properties, which is why we focus primarily on a
preconditioning scheme that only employs highly optimized
matrix-vector products.

2

GMRES(5)

GMRES(10)

GMRES(5)Smoother

Coarse-solve
Preconditioned-by

GMRES(5)

GMRES(10)

GMRES(5)

Coarse-solve

Smoother

Figure 3: Multi-level GMRES.

In the hierarchy, the routine linsolve is responsible for solv-
ing Ax = b using iterative methods, given a SPOT operator A,
right-hand side b, initial guess x0, and parameters specifying
the specific method and preconditioner. This is the method
called when we write H\q in Matlab, as well as for various
smoothing and coarse-grid solves of the multigrid precondi-
tioner. This separation of code between matrix-vector products
and matrix-vector division allows us to reuse code and make the
programming of seemingly complicated preconditioners much
more manageable.

We would like to emphasize that all of these implementation-
specific choices are merely that, choices, and that one can easily
change any and all of these decisions to suit a particular prob-
lem or computational environment. For instance, given that
MPI is dependent on all nodes remaining operational for the en-
tire duration of the computation, one can swap out the parallel
Matlab component (the parallel computation) of this approach
for a more fault-tolerant parallel distribution scheme, while
still keeping the rest of the software design intact. The com-
putational overhead of this approach is negligible compared to
the cost of solving the forward and adjoint Helmholtz systems
but we reap a significant amount of flexibility and expressibil-
ity for our algorithms in this way. Furthermore, as the state
of the art advances with respect to Helmholtz discretizations
and/or preconditioners, it is very straightforward to “plug in”
such improvements directly in to this framework and the per-
formance improvements will propagate throughout the entire
FWI workflow. We also benefit from the integration of the 2D

and 3D components of this code as we can rapidly prototype
and validate FWI-based algorithms in 2D experiments, where
the computational times are much more manageable, before
applying them to realistic 3D problems, with very minimal code
changes.

NUMERICAL EXPERIMENTS

To demonstrate the effectiveness of this software design, we val-
idate our approach by performing stochastic optimization with
batching coupled with a projected LBFGS scheme (Bertsekas
(1982)). Specifically, we fix a frequency and write

f (m, I) =
∑
i∈I

1
2
‖PHi(m)−1qi−Di‖2

2, (2)

where I ⊂ {1,2, . . . ,ns}. The stochastic optimization portion
of our algorithm involves randomly subsampling the sources
used, reducing the number of PDEs that need to be solved at
a given iteration. Given that we have p parallel workers, the
ns sources are partitioned in to subsets {S j}p

j=1, where the jth

worker has access to indices S j of D. In order to take this data
distribution in to account and to minimize communication, for
the jth worker, at each iteration, we draw a random subset I j
of the indices it currently possesses, S j, with 1 ≤ |I j| < |S j|.
In this way, we reduce the number of PDEs that have to be
solved while still solving sufficiently many to use our parallel
resources effectively (in the language of parallel computing,
we are effectively “load balancing” our tasks). Once these ran-
dom sources are selected, we run max j |S j|/|I j| iterations of an
LBFGS algorithm with bound constraints on the minimum and
maximum allowed velocities, as outlined in Algorithm 1. This
number of iterations is chosen so that the total number of PDEs
solved in the LBFGS portion of the algorithm is equivalent to
one full pass through the data. This procedure then repeats
with a new set of randomly drawn indices for a total of T outer
iterations, which is comparable to a first-order optimization
algorithm that computes T full data objective and gradient cal-
culations, resulting in a similar runtime for both approaches.
This is the so-called ‘batching’ approach in stochastic optimiza-
tion, which aims to reduce the variance of a stochastic search
direction by drawing a larger number of samples.

Algorithm 1 Stochastic LBFGS with bound constraints
Input: initial point x0, number of outer iterations T , initial per-

worker number of sources b0,
For k = 0,1, . . . ,T
1. Each worker j draws a random set of source indi-

cies I j with |I j|= bk ≤ |S j|.
2. Compute the stochastic objective fk = f (xk, I j) and gradi-

ent gk = g(xk, I j).
3. Run Projected LBFGS for max j |S j|/|I j| itera-

tions with minimum velocity vmin and maximum velocity vmax
4. Adjust bk if sufficient function decrease is not observed (op-

tional)

We compare this stochastic approach to a standard, full-data
LBFGS method for a 20km x 20km x 4.6km subset of the over-
thrust model with 50m grid spacing in each dimension. We

Unified 2D/3D Software Framework for FWI

generate data from 5 frequencies from 3Hz to 7Hz and use a
50 x 50 source grid with 400m grid spacing with 400 x 400 re-
ceivers placed on a 50m spacing in an ocean bottom acquisition
setup. We use 100 nodes running 4 Matlab workers each, where
each node has 128GB of ram and 20 CPU cores. We invert
a single frequency at a time, fixing the number of full-data
objective evaluations to T = 3. Each worker stores 7 shots per
frequency, which results in a 7-fold reduction in computational
time for evaluating the stochastic objective and gradient. By
allowing the stochastic algorithm to perform more iterations,
we solve the same number of PDEs in both algorithms and the
computational time between them is approximately the same,
within a 10% margin.

Here we see that in Figures 4 and 5, given such a stringent re-
quirement on the number of PDEs solved, the stochastic method
makes much more progress towards the true solution compared
to the full-data method. Also the effect of the acquisition grid
imprint on the model is greatly reduced as a result of the vary-
ing set of source positions chosen at each iteration, although
we have introduced some spurious noise. For a small number
of passes through the data, we are able to make better progress
towards the true solution using a stochastic method compared
to using the full-data, although in both cases, the limited com-
putational budget prevents the deeper parts of the model from
being updated significantly. The point of these experiments is
not necessarily to advocate for one algorithm over another for
performing FWI, but instead to illustrate how straightforward
it is to implement these algorithms for large scale FWI in this
framework.

x [km]
0 5 10 15 20

y
[k

m
]

0

5

10

15

20

x [km]
0 5 10 15 20

y
[k

m
]

0

5

10

15

20

x [km]
0 5 10 15 20

y
[k

m
]

0

5

10

15

20

x [km]
0 5 10 15 20

y
[k

m
]

0

5

10

15

20

Figure 4: z = 500m depth slice. Top left - true model, top
right - initial model, bottom left - full data FWI, bottom right
- stochastic FWI. The number of PDE solves in both methods
are the same.

y [km]
0 5 10 15 20

z
[k

m
]

0

1.1

2.3

3.5

4.6

y [km]
0 5 10 15 20

z
[k

m
]

0

1.1

2.3

3.5

4.6

y [km]
0 5 10 15 20

z
[k

m
]

0

1.1

2.3

3.5

4.6

y [km]
0 5 10 15 20

z
[k

m
]

0

1.1

2.3

3.5

4.6

Figure 5: x = 12500m slice. Top left - true model, top right -
initial model, bottom left - full data FWI, bottom right - stochas-
tic FWI. The number of PDE solves in both methods are the
same.

CONCLUSION

In this abstract, we introduced a new software framework for
FWI written primarily in Matlab. We leverage Matlab’s ease
of expressibility of linear algebraic concepts, as well as its abil-
ity to call highly optimized C libraries, to create a framework
that is efficient, scalable, flexible, and correct. We employ
modern software engineering principles to have highly orga-
nized codes that are easy to read, understand, and extend. The
flexibility of our design is such that users can integrate their
own existing preconditioners, Helmholtz discretizations, or data
distributions in to this framework with only minor modifica-
tions. By employing these abstractions, and in particular the
SPOT linear operator paradigm, we are able to easily validate
research-calibre algorithms such as stochastic optimization on
realistically sized problems.

This work was financially supported in part by the Natural
Sciences and Engineering Research Council of Canada Collab-
orative Research and Development Grant DNOISE II (CDRP J
375142-08). This research was carried out as part of the SIN-
BAD II project with the support of the member organizations
of the SINBAD Consortium. The authors wish to acknowledge
the SENAI CIMATEC Supercomputing Center for Industrial
Innovation, with support from BG Brasil and the Brazilian Au-
thority for Oil, Gas and Biofuels (ANP), for the provision and
operation of computational facilities and the commitment to
invest in Research & Development.

Unified 2D/3D Software Framework for FWI

REFERENCES

Bertsekas, D. P., 1982, Projected newton methods for optimiza-
tion problems with simple constraints: SIAM Journal on
control and Optimization, 20, 221–246.

Chen, Z., D. Cheng, W. Feng, and T. Wu, 2013, An optimal
9-point finite difference scheme for the helmholtz equation
with pml.: International Journal of Numerical Analysis &
Modeling, 10.

E. van den Berg, M. P. F., 2014, Spot - a linear-operator toolbox:
"http://www.cs.ubc.ca/labs/scl/spot/".

Lago, R., and F. J. Herrmann, 2015, Towards a robust geometric
multigrid scheme for Helmholtz equation: Technical Report
TR-EOAS-2015-3, UBC.

Métivier, L., and R. Brossier, 2016, The seiscope optimization
toolbox: a large-scale nonlinear optimization library based
on reverse communication: Geophysics, 81, F11–F25.

Operto, S., J. Virieux, P. Amestoy, J.-Y. L’Excellent, L. Gi-
raud, and H. B. H. Ali, 2007, 3d finite-difference frequency-
domain modeling of visco-acoustic wave propagation using
a massively parallel direct solver: A feasibility study: GEO-
PHYSICS, 72, SM195–SM211.

Padula, A. D., S. D. Scott, and W. W. Symes, 2009, A software
framework for abstract expression of coordinate-free linear
algebra and optimization algorithms: ACM Trans. Math.
Softw., 36, 8:1–8:36.

Symes, W. W., D. Sun, and M. Enriquez, 2011, From modelling
to inversion: designing a well-adapted simulator: Geophysi-
cal Prospecting, 59, 814–833.

http://www.cs.ubc.ca/labs/scl/spot/

