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SUMMARY

Much of AVA analysis relies on characterizing background
trends and anomalies in pre-stack seismic data. Analysts re-
duce a seismic section into a small number of these trends and
anomalies, suggesting that a low-dimensional structure can be
inferred from the data. We describe AVA-attribute characteriza-
tion as an unsupervised-learning problem, where AVA classes
are learned directly from the data without any prior assumptions
on physics and geological settings. The method is demonstrated
on the Marmousi II elastic model, where a gas reservoir was
successfully delineated from a background trend in a depth
migrated image.

INTRODUCTION

In the most general sense, unsupervised learning is a subfield
of machine learning that tries to infer hidden structure within
an unlabeled dataset. Unsupervised methods are particularly
useful when the inferred structure is lower dimensional than
the original data. For example, given a list of n patients in
a hospital and their corresponding symptoms s, it is unlikely
that each patient-symptom combination is unique. A set of
common diseases d can be inferred from the data, where d�
n,s. Popular unsupervised learning and data mining methods
such as principal component analysis (PCA) and K-Means
clustering rely on exploiting low-dimensional structure inherent
in the data (Ding and He, 2004).

Interestingly, interpreted images and geological maps produced
by geoscience workflows are substantially lower dimension
than the original field data. The structure of the major sedimen-
tary layers of the Earth is relatively simple, as rocks with similar
physical properties are formed along relatively continuous inter-
faces and facies in the subsurface. For this reason, we can use a
combination of physical models, local geological knowledge,
and experience to reduce large seismic and well-log datasets
into low-dimensional models of the Earth. Abstractly, we are in-
ferring a low-dimensional Earth model from high-dimensional
geophysical data. In this respect, resevoir characterization can
be posed as an unsupervised machine-learning problem.

In conventional AVA interpretation, two-term AVA attributes
are extracted from seismic angle gathers using the Shuey ap-
proximation (Shuey, 1985) as a physical reflectivity model.
Multivariate analysis of these attributes lead to an estimation
of a background trend of shale-sand reflections and anomalous
outliers that can be considered potential hydrocarbon indica-
tors (Castagna et al., 1985, 1998). Although this has proven to
be an effective workflow, the efficacy of the method requires
calibrated seismic data processing that preserves reflection am-
plitudes throughout migration. In theory, amplitude preserving
migration is feasible (Sava et al., 2001; Zhang et al., 2014;
Gajewski et al., 2002), however there are always large uncer-
tainty and variations in measured AVA responses. Recent work

by Hami-Eddine et al. (2012) applied neural networks to clas-
sify AVA anamolies, while Hagen (1982), Saleh et al. (2000),
and Scheevel et al. (2001) used principal component analy-
sis (PCA) to characterize pre-stack seismic data. We follow a
similar philosophy and demonstrate that conventional AVA char-
acterization can be reformulated as an unsupervised learning
problem. In the vernacular of machine learning, the problem
generalizes as dimensionality reduction followed by clustering.

THEORY & METHOD

Starting with angle-domain common-image gathers, we desire
a segmented output image where each pixel is classified accord-
ing to the local AVA response. We define the angle gathers
as feature vectors xi ∈ Rd , i ∈ [1, ...n], where n is the number
of samples in the image and d is the number of angles in the
gather. The feature vectors are shaped into a matrix X ∈ Rn×d ,
where each row corresponds to a point in the image and each
column corresponds to an angle. Generalizing the data as a
feature matrix allows us to work in an unsupervised learning
framework (Figure 1).

Figure 1: AVA characterization as unsupervised learning.

We assume that the columns of X are not independent, as the
angle response of a reflection is often modeled by simple equa-
tions with as few as two parameters (e.g.. two-term Shuey
equation). Assuming the existence of a lower-dimensional rep-
resentation, we can use dimensionality reduction techniques to
reduce the number of columns in X into a new feature matrix
X̂ ∈ Rn×m,m << d.

PCA reduces dimensionality by keeping the m most significant



eigenvectors from the decomposition of the covariance matrix

G = XTX =


〈x1,x1〉 〈x1,x2〉 . . . 〈x1,xn〉
〈x2,x1〉 〈x2,x2〉 . . . 〈x2,xn〉

...
...

. . .
...

〈xn,x1〉 〈xn,x2〉 . . . 〈xn,xn〉

 . (1)

Although PCA will reduce the number of features while maxi-
mizing the variance of the data (a measure of information), it is
a linear model which may not result in the best low-dimensional
representation of X . Note that the covariance matrix G depends
only on the inner product of the feature vectors 〈xi,x j〉 and not
the features directly. We can thus replace the inner-products
with a kernel function, which implicitly calculates a similarity
measurement in a higher-dimensional feature space (Hofmann
et al., 2008). Using a non-linear kernel function κ(xi,x j) will
result in a non-linear PCA operation (Schölkopf et al., 1997).
In this study, we found by trial that the polynomial kernel

κ(xi,x j) = (xT
i x j + c)d (2)

with c = 0 and d = 10 provided the best clustering in our exam-
ples.

Assuming that common similarities in the rows of X̂ can be
sorted into a finite set of groups, we can use a clustering algo-
rithm to associate each sample to a group. Since there is no
guarantee that the clusters will have Gaussian structure, meth-
ods that rely on Gaussian mixtures such as K-means are not
appropriate for this application. Instead, we use BIRCH cluster-
ing (Zhang et al., 1996), which is a hierarchical clustering algo-
rithm designed for large databases and makes no assumptions
about underlying statistical distributions or cluster geometry.
The output vector consists of the cluster identification number
for each point, which is reshaped back into model dimensions
resulting in a segmented image. Open-source software libraries
Madagascar and scikit-learn were used for seismic processing
and machine learning. All scripts are publically available at
https://github.com/ben-bougher/thesis.

EXAMPLE

We tested the method using a subset of the elastic Marmousi
II model (Martin et al., 2002) (Figure 2). This section of the
model contains a gas reservoir embedded in layers of brine
saturated sand and shales. We used the Zoeppritz equations to
generate images of the true reflectivity response and also synthe-
sized seismic gathers, which intentionally violate the amplitude
preserving assumptions implied by conventional AVA analy-
sis. The synthetic seismic was generated using visco-acoustic
modeling and migrated using the sinking survey algorithm de-
scribed by Sava and Fomel (2003), which does not preserve
amplitude.

We ran the algorithm using PCA, kernelized PCA, and con-
ventional two-term Shuey coefficients to reduce the datasets
to two features. For the physically consistent data, all meth-
ods were able to cluster the background trend and anomalies,
however the multivariate distribution of the reduced features
showed interesting geometries. The Shuey terms (Figure 3)

Figure 2: Subset of the Marmousi II elastic model.

and linear PCA (Figure 4) showed remarkably similar reduced
features, where the kernelized PCA (Figure 5) yielded tighter
more distinct clusters.

Figure 3: Clustering the true reflectivity model using Shuey
terms.

The migrated seismic was peak filtered and thresholded to filter
for reflection events. Shuey terms were extracted from the mi-
grated seismic data using a basic least-squares data fit. The poor
correlation between the Shuey coefficients reflect the physical
inconsistencies between the model and the migrated gathers.
Clustering on the Shuey terms was not able to discriminate the
reservoir from the background trend (Figure 6); however, both
the PCA (Figure 7) and kernelized PCA (Figure 8) showed
significant delineation of the reservoir.

CONCLUSIONS

AVA characterization was presented in an unsupervised ma-
chine learning framework. PCA and non-linear kernel PCA
feature reduction algorithms were compared to conventional
Shuey coefficients. Each approach was able to segment the true
reflectivity image, however the conventional Shuey term ap-
proach failed to delineate gas reservoir in the migrated seismic
image. The main result of this work is that AVA analysis can



Figure 4: Clustering the true reflectivity model using principal
components.

Figure 5: Clustering the true reflectivity model using kernelized
principal components.

Figure 6: Clustering the migrated seismic using Shuey terms as
features.

Figure 7: Clustering the migrated seismic using prinicpal com-
ponents as features.

Figure 8: Clustering the migrated seismic using kernelized
principal components as features.

be reformulated as a machine learning problem, which can suc-
cessfully characterize an image without physical or geological
assumptions.
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