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SUMMARY:

Time-domain Full-Waveform Inversion (FWI) aims to image
the subsurface of the earth accurately from field recorded data
and can be solved via the reduced adjoint-state method. How-
ever, this method requires access to the forward and adjoint
wavefields that are meet when computing gradient updates.
The challenge here is that the adjoint wavefield is computed
in reverse order during time stepping and therefore requires
storage or other type of mitigation because storing the full
time history of the forward wavefield is too expensive in re-
alistic 3D settings. To overcome this challenge, we propose
an approximate adjoint-state method where the wavefields are
subsampled randomly, which drastically the amount of storage
needed. By using techniques from stochastic optimization, we
control the errors induced by the subsampling. Examples of
the proposed technique on a synthetic but realistic 2D model
show that the subsampling-related artifacts can be reduced sig-
nificantly by changing the sampling for each source after each
model update. Combination of this gradient approximation with
a quasi-Newton method shows virtually artifact free inversion
results requiring only 5% of storage compared to saving the
history at Nyquist. In addition, we avoid having to recompute
the wavefields as is required by checkpointing.

INTRODUCTION

Time-domain Full-Waveform Inversion (FWI) is a well known
and widely used method for acoustic inversion as its marching
in time structure allows easy and memory-efficient implementa-
tion and fast solutions. The requirement to access the forward
wavefield in a reverse order in time led to numerous techniques
including checkpointing and optimal checkpointing strategies
(Symes, 2007,Griewank and Walther (2000)), recomputing the
wavefield when needed from a partial save of the time history,
or boundary methods that use integrals to compute the wave-
field from its full history saved at the boundary of the domain
(Plessi, 2006; Clapp, 2009).

All approaches that aim to address the above problem are bal-
ancing memory requirements and computational cost of recov-
ering the wavefield for the unknown part of the history. The
method we are proposing in addition will also balance memory
requirements with the accuracy of the gradient calculations.
We motivate this strategy from recent insights in stochastic
optimization that prove that gradients need not be accurate es-
pecially in the beginning of an iterative inversion procedure
(van Leeuwen and Herrmann, 2014). However, our approach
differs slightly because we do not approximate the objective.
Instead, we approximate the gradient by randomly subsam-
pling the time history of the wavefield prior to correlation and
applying the imaging conditions. To limit the imprint of this
random subsamplings, we draw independent subsamplings for
each source and after each model update. As a consequence,
the subsampling-related artifacts average out as the inversion

procedure progresses.

Our outline is as follows. First, we present our formulation of
acoustic FWI followed by the proposed subsampling method.
Next, we discuss it performance on a complex synthetic.

ACOUSTIC FULL-WAVEFORM INVERSION (FWI)

We start by defining usual adjoint-state time-domain full-
waveform inversion (FWI) for an acoustic media (Virieux and
Operto, 2009). The continuous acoustic wave equation for
the pressure wavefield u is define by the partial differential
equation (PDE)

m
∂ 2u
∂ t2 −∇

2u = q (1)

where m is the spatial distribution of the square slowness, ∇2

is the Laplacian and q is the source. In the following, we will
only consider acoustic media only with discrete measurements,
collected in the vector d, of the discrete pressure field u. Our
unknown parameter is the discretized square slowness m and
we will denote by u[t] = u(tδ t) the discrete wavefield at discrete
time t with nt the total number of time steps.

For a single source qs, time-domain inversion for the
adjoint-state method derives from the following discrete
PDE-constrained optimization problem:

minimize
m,u

1
2
‖Pru−d‖2

2

subject to A(m)u = qs,

(2)

where Pr is the discrete projection operator restricting the syn-
thetic wavefield to the receiver locations, A(m) is the discretized
wave equation matrix, u is the synthetic pressure wavefield, q is
the discrete source and d is the measured data. The parameters
to be estimated are the discrete square slownessses collected in
the vector m = {v−2

i }i=1···N with N the size of the discretiza-
tion of the model and v the velocity. The adjoint-sate method
solves the above problem by eliminating the PDE constraint
and can be formulated as

minimize
m

Φs(m) =
1
2

∥∥∥PrA−1(m)qs−d
∥∥∥2

2
. (3)

The gradient of the above objective is given by the action of
the adjoint of the Jacobian on the data residual δd = (Pru−d)
and reads

∇Φs(m) =−
nt∑

t=1

{
((Du)[t])T diag(v[t])

}
= JT

δd (4)

where u is the forward wavefield computed forwards in time
via

A(m)u = qs, (5)

and v is the adjoint wavefield computed backwards in time via

A∗(m)v = P∗r δd. (6)



In these expressions the superscript T denotes the transpose
and the matrix D represents the discrete second-order time
derivative. We define the discrete second-order time derivative
as

∂ 2u
∂ t2 [t] =

u[t−2]−2u[t−1]+u[t]
δ t2 (7)

so that the matrix D becomes a lower-triangular matrix and its
transpose an upper-triangular matrix. Given this convention, we
compute the second-time derivative of the forward wavefield
with the left lower-triangular derivative matrix and conversely
we apply the right upper-triangular derivative matrix to the time-
reversed adjoint wavefield. With this convention we match the
computational order so we have the necessary wavefields at the
the different times available. We put the transpose on D so we
only need to store one time-step of the forward wavefield.

Assuming I = [1,2,3, ....,nt ] and with the time derivative de-
fined as in Equation 7, we can write an equivalent of the gradient
in Equation 4 as

∇Φs(m) =−
∑
t∈I

[
diag(u[t])(DT v[t])

]
= JT

δd. (8)

The advantage of the alternative expression for the gradient,
with the application of the derivative switched, is that we avoid
storage of wavefield at additional time steps. While this alter-
native formulation is beneficial, gradient computations need
storage of wavefields for all sources, which is computationally
prohibitive.

APPROXIMATE FWI VIA STOCHASTIC GRADIENTS

The main disadvantage of time-domain adjoint state methods
is the need of access to both the forward and adjoint wave-
fields. While certain techniques, mentioned in the introduction,
overcome this need we follow a different strategy by allowing
(random) errors in the gradient while still computing the objec-
tive accurately. Instead of using wavelet or other domain lossy
compression techniques, we propose to randomly subsample
the time histories of the forward and adjoint wavefields. In this
way, we circumvent the costly recomputations part of optimal
checkpointing, which requires O(nt lognt) additional computa-
tions. Before giving details on our sampling method, let us first
define the subsampling rate as

r =
ncorr

nNyquist
(9)

where ncorr is the number of terms in the correlation calcula-
tions that are part of the gradient. Naively, these correlations
are carried out over all time steps of the simulations but this
not necessary since the simulation time steps are much smaller
then the Nyquist sample interval. Therefore, we define our sub-
sampling rate with respect to the nNyquist, which is the number
of remaining terms after sampling at Nyquist.

Since we allow for errors, preferably random, in the gradient
calculations we are interested in the cases where r� 1 that
require much less storage. To that end, we redefine the gradient
in Equation 8 by its subsampled counterpart given by

∇̃Φs(m) =−
∑
t∈Ĩ

[
diag(u[t])(DT v[t])

]
= J̃T

δd. (10)

In this approximation (denoted by the 1̃), we sum over the
subset of times Ĩ ⊂ [1 · · ·nt ] with #(Ĩ)� nNyquist. To reduce
the buildup of subsampling-related artifacts, we draw for each
gradient step a new independent random time history for each
source. As we will show below, this generated fewer artifacts
compared to deterministic periodic subsampling since the ar-
tifacts from different gradient updates tend to cancel. Instead
of choosing the samples uniformly random, we employ a jit-
ter sampling technique (Hennenfent and Herrmann, 2008) to
control the maximum time gaps for a given subsampling rate r.

Random subsampling of the different terms in the correlation
correlations is not the only way to subsample. As we have
learned from the field of Compressive Sensing, we can also
randomly mix and subsample the time histories. Since we do
not have the complete time history available, this mixing can
not be done with dense matrices but is feasible with sampling
matrices M for which MT M is block diagonal. In this case,
the gradient for a single shot and at a single position in the
subsurface can be written as

∇̃Φs(m)[xi,yi,zi] =−u[xi,yi,zi]
T MT M(DT v[xi,yi,zi]),

(11)
where M is the time-mixing and subsampling matrix.

Algorithm 1 Time domain FWI via approximate gradients
Data: Measured data d
Result: approximate solution of FWI m via approximate ad-
joint state
Choose a subsampling ratio for the wavefield
Set initial solution m0 to a smooth background
For k=1:niter

For s=1:nsrc
Draw an new set of time indexes Ĩ for the wavefield
Compute the forward wavefield u via Equation 1
Compute the gradient via Equation 10
stack with the previous gradients g = g+ ∇̃Φs(mk)
End
Get the step length α via Line Search
Update the model mk+1 = mk−αg

End
Solve FWI via approximates gradients

LINE SEARCH

In Algorithm 1, we use the weak Wolf line search in order to
find the correct step length for our updates. However, remember
that we are not working with the true gradient because of the
subsampling. For that reason, we check whether the Wolfe line-
search conditions (Skajaa, 2010) are met. We check whether
the objective is decreasing and whether the curvature condition
is met. If the curvature is not met but the objective is decreasing,
we consider the step length to be correct. This guarantees we
are still a decent direction.

EXAMPLES

To demonstrate the performance of our stochastic optimiza-
tion approach to FWI, we first consider the performance of
stochastic-gradient descent. We introdruce stochasticity by
random subsampling the forward and adjoint wavefield which



X location (m)

D
e

p
th

 (
m

)
True model

0 1000 2000 3000 4000 5000

0

500

1000

1500

2000

X location (m)

D
e

p
th

 (
m

)

Initial model

0 1000 2000 3000 4000 5000

0

500

1000

1500

2000

Figure 1: Initial and true model.

causes random errors in the gradients but not in the objective.
For a synthetic, we invert for the square slowness from pressure
data recorded at the surface. We have chosen a model small
enough to insure we can store the complete time history at
Nyquist sampling rate. We use 50 sources at 100m intervals
and 201 receivers at 25m intervals and Ricker wavelet with a
15Hz peak frequency as a source. To time step given by the
CFL stability condition is δ t = .5ms yielding 4801 timesteps
for the 2.4 s of recording. Given the central frequency of
the Ricker wavelet the Nyquist sample interval is 4ms yield-
ing nNyquist = 601. To limit the memory inprint we choose a
subsampling ratio of r = .05 for our approximate gradient cal-
culations according to Algorithm 1 . This reduces the number
of time samples to be stored to 30—34.

To make a fair comparison, we fixed the number of gradient
steps to 50 given a a relatively good 1D starting model (see
Figure {1) obtained by smoothing. We compare our subsam-
pling methods, namely jitter sample and mixed-subsampled, to
gradients calculated for correlations carried out at Nyquist. The
results are summarized in Figure 2 . As we can see from this
Figure, the results obtained with approximate FWI sampled at
r = .05 show generally the same features as the inversion result
sampled at Nyquist. The artifacts appear random and relatively
mundane. In Figure 3 we compare the relative model errors
with respect to the true model and these plots show that peri-
odic subsampling at r = 0.05 performs the worst, that Nyquist
and jitter subsampled perform relatively the same throughout
the iterations while the result with mixing and subsampling
behaves better. This is not totally surprising because we have
to remember that we mix and subsample the wavefield sampled
at the time-stepping interval of the simulations, which is much
smaller.

While the above example is certainly promising, it does not use
second-order information. It is well-known that stochastic opti-
mization techniques for second order method are challenging
and a topic of open research. Having said that using vanilla out-
of-the-box l-BFGS (Skajaa, 2010) performs remarkably well as
we can observe from Figure 4, where we juxtapose results at
Nyquist and at r = 0.05 for the jittered subsampling. It is clear
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Figure 2: Inverted velocity for Gaussian subsampling.
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Figure 3: Recovered velocity SNR.

from this result that the subsampling-related artifacts nearly
disappeared even for the jittered sampled case. We think this
remarkable because we were able to obtain this excellent result
with only 5% of the time history of the forward and adjoint
wavefields sampled at Nyquist. Compared the sampling rate of
the simulation this is a 160-fold reduction.

CONCLUSIONS AND DISCUSSION

We presented a new method to solve the time-domain adjoint-
state full-waveform inversion problem without relying on com-
plete storage or recomputation of the forward and reverse-time
adjoint (receiver) wavefields. We accomplished this by com-
bining insights from stochastic optimization and randomized
subsampling where gradients are allowed to contain random
sampling-related errors. Compared to random subsampling
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Figure 4: Inverted velocity with l-BFGS.

along the sources, an approach now widely used to reduces
the number of wave-equation simulations, our method only
approximates the gradient and not the objective by randomly
subsampling the forward and adjoint wavefields prior to correla-
tions and applying the imaging condition. We find that despite
large subsampling ratios, 20-fold compared to Nyquist and
160-fold compared to the time-stepping of the simulations, ex-
cellent inversion results can be obtained by having independent
samplings for each source, and possibly each gridpoint in the
model, that are redrawn after each model update. The results
for stochastic gradient decent clearly benefited from random
sampling and we even found that the results for random mixing
and subsampling were better than sampling at Nyquist. This
means that the mixing picks up information at the fine time
scales, which may explain the improvements in the nonlinear
inversion. The results for quasi-Newton (with l-BFGS) are also
excellent and show very little artifacts in case of jittered subsam-
pling. We expect that these results will improve when we mix
and subsample. As a results, we obtained an alternative method
to reduce the memory and computational demands that arise
from the need to have simultaneous access to the forward and

reverse-time wavefield in time-domain full-waveform inversion
based on time stepping.
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