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SUMMARY

We extend full-waveform inversion by Wavefield Reconstruc-
tion Inversion by including convex constraints on the model.
Contrary to the conventional adjoint-state formulations, Wave-
field Reconstruction Inversion has the advantage that the Gauss-
Newton Hessian is well approximated by a diagonal scaling,
which allows us to add convex constraints, such as the box- and
the edge-preserving total-variation constraint, on the square
slowness without incurring significant increases in computa-
tional costs. As the examples demonstrate, including these
constraints yields far superior results in complex geological
areas that contain high-velocity high-contrast bodies (e.g. salt
or basalt). Without these convex constraints, adjoint-state and
Wavefield Reconstruction Inversion get trapped in local minima
for poor starting models.

INTRODUCTION

Time-harmonic acoustic full-waveform inversion (FWI, Taran-
tola (1984); Virieux and Operto (2009); Herrmann et al. (2013))
with the adjoint-state method derives from the following PDE-
constrained optimization problem:

min
m,u

∑
sv

1
2
‖Pusv−dsv‖2 such that Av(m)usv = qsv , (1)

where Av(m)usv = qsv denotes the discretized Helmholtz equa-
tion. Let s = 1, ...,Ns index the sources and v = 1, ...,Nv index
frequencies. We consider the model, m, which corresponds
to the slowness squared, to be a real vector m ∈ RN , where N
is the number of points in the spatial discretization. For each
source and frequency, the wavefields, sources and observed
data are denoted by the complex-valued vectors usv ∈ CN ,
qsv ∈ CN and dsv ∈ CNr respectively, where Nr is the num-
ber of receivers. P is the operator that restricts the wavefields
onto the receiver locations. The discretized Helmholtz matrix
has the form Av(m) = ω2

v diag(m)+ L, where ωv is angular
frequency and L is a discrete Laplacian.

The most common approach to solve Equation 1 is to eliminate
the non-convex PDE constraints, which results in a parametric
inversion problem over m, requiring solves of the Helmholtz
and adjoint Helmholtz systems for each iteration of the opti-
mization. While elimination of these constraints undergirds the
majority of current-day FWI approaches, it is computationally
expensive and prone to local minima and therefore relying on
unrealistically accurate starting models. To overcome these
challenges, recent work proposes to reduce computational costs
via randomized subsampling techniques [(Krebs et al., 2009;
van Leeuwen et al., 2011; Li et al., 2012; Haber et al., 2012) and
reliance on accurate starting models via so-called extensions.
The goal of these extensions is to make sure that FWI does not
paint itself in a corner for poor starting models that can not

fit the observed data. Instead, the extended formulations are
designed to fit the data irrespective of the quality (within rea-
son) of the starting model. Symes (2008) and later Biondi and
Almomin (2013) accomplish this by extending the model space
to include a subsurface offset coordinate while Mike Warner’s
Adaptive Waveform Inversion (AWI, Warner and Guasch, 2014)
introduces Wiener filters that live in the data-space and that are
designed to fit the observed data irrespective the quality of the
starting model. The extended inversions, where the dimension-
ality of the search space is increased, are subsequently carried
out by migration-velocity-analysis (MVA, Symes, 2008) type
of focussing procedures that squeeze the expanded search space
to something physical and thereby yielding model updates that
are less prone to cycle skipping.

Wavefield Reconstruction Inversion (WRI, van Leeuwen and
Herrmann, 2013a; van Leeuwen et al., 2014; van Leeuwen and
Herrmann, 2013b) is also based on an extension. However,
contrary to the afore mentioned extensions, WRI derives di-
rectly from Equation 1 by replacing the constraints by `2-norm
penalties yielding

min
m,u

∑
sv

1
2
‖Pusv−dsv‖2 +

λ 2

2
‖Av(m)usv−qsv‖2 . (2)

As opposed to conventional FWI, the optimization of Equa-
tion 2 is carried out over both the squared slownesses m and
the wavefields collected in u. As in AWI, WRI follows an alter-
nating optimization strategy where for a fixed model mn at the
nth iteration wavefields are calculated that fit both the observed
data and the PDE. Given the solution of this data-augmented
wave equation given by

ūsv = argmin
usv

1
2
‖Pusv−dsv‖2 +

λ 2

2
‖Av(mn)usv−qsv‖2, (3)

the model is updated by making a step that minimizes the PDE
misfit, 1

2‖Av(mn)ūsv− qsv‖2, given the solution of the data-
augmented wave equation whose solutions ū fit the observed
data and the wave equation. The latter step in this alternating
variable-projection approach (Aravkin and van Leeuwen, 2012),
can be interpreted as a “focussing” by the wave equation itself
yielding the following expressions for the gradient and Gauss-
Newton Hessian (van Leeuwen and Herrmann, 2013a):

gn =
∑

sv
Re
{

λ
2
ω

2
v diag(ūsv)

∗ (Av(mn)ūsv−qsv
)}

(4)

and

Hn
sv ≈

∑
sv

Re
{

λ
2
ω

4
v diag(ūsv(mn))∗ diag(ūsv(mn)

}
. (5)

Compared to regular adjoint-state methods, the above Gauss-
Newton Hessian is well approximated by the diagonal (because
it is diagonally dominant) while the gradient requires only the



solution of the data-augmented wave equation and is made of
correlating this solution with the PDE residual. Moreover, the
gradient and Hessian of WRI can be accumulated in parallel
and do not require storage of all wavefields as in full-space
all-at-once methods (Haber and Ascher, 2001) used to solve
Equation 1. The parameter λ in this formulation controls the
PDE and data misfits and can be chosen to fit the observed
data. Given the above expressions for the gradient and Gauss-
Newton Hessian, we arrive at the following expression for
scaled-gradient model updates (Bertsekas, 1999):

∆m = argmin
∆m∈RN

∆mT gn +
1
2

∆mT Hn
∆m+ cn∆mT

∆m

mn+1 = mn +∆m,

(6)

with cn ≥ 0. These updates correspond to ordinary gradient up-
dates with H = 0 and and to the Newton method when cn = 0
and H the true Hessian. Since the Gauss-Newton Hessian
approximation (cf. Equation 5) is diagonal, it can be easily
incorporated into Equation 6 at essentially no additional compu-
tational cost. For this reason, the above quadratic approximation
forms the basis for our proposed generalization of WRI that
includes convex constraints.

INCLUDING CONVEX CONSTRAINTS

While there are strong indications that WRI is, by virtue of its
increased search space and ability to fit the data, less sensitive
to the accuracy of starting models, its current formulation does
not employ prior knowledge in the form of convex box- or
edge-promoting total-variation constraints.

Inclusion of this type of constraints makes WRI better posed
and can be accomplished by simply adding convex constraints
m ∈C, where C is a convex set, to Equation 6. We now have

∆m = argmin
∆m∈RN

∆mT gn +
1
2

∆mT Hn
∆m+ cn∆mT

∆m

such that mn +∆m ∈C .

(7)

Incorporation of these constraints ensures that the next model it-
erate remains in the convex set (mn+1 ∈C) but makes ∆m more
difficult to compute. However, the problem remains tractable
if C is easy to project onto or can be written as an intersec-
tion of convex constraints that are each easy to project onto.
Because solving for ūn (Equation 3) is much more expensive,
projections on these convex subproblems is unlikely to become
a computational bottleneck. Quite the contrary, inclusion of
these constraints could even speed up the overall method if it
leads to fewer required model updates compared to solving the
unconstrained problem.

According to Esser et al. (2013), the above approach works for
fairly general Hessian approximations. For WRI specifically,
where the Gauss-Newton Hessian is diagonal and made of the
sum over all experiments (cf. Equation 5), we only need the
diagonal entries of the Hessian to be bounded for m ∈C. In
addition, line searches are not needed as long as cn is small
enough.

Since the approximate Hessian Hn is diagonal and positive,
it is straightforward to add box constraints—i.e. the entries

of the vector m are constrained to the interval [b,B] with b,B
the minimum and maximum, or Cbox = {m : mi ∈ [b, B], i =
1 · · ·N} for short. While inclusion of these box constraints
leads to cheap closed-form analytic expressions, imposing this
constraint by itself is insufficient in situations where there is
lots of source cross-talk, induced by the use of simultaneous
sources to speed up the computations, or in the presence of high-
contrast high-velocity unconformities such as salt or basalt. As
we will show below, WRI yields better solutions when adding a
combination of box- and total-variation norm constraints—i.e.,
we seek updates

mn+1 = mn +∆m s. t. mn+1 ∈Cbox∩CTV, (8)

where CTV = {m : ‖m‖TV ≤ τ} with the discrete TV-norm (we
reorganized m into a N = N1×N2 2D array) is defined as

‖m‖TV =
1
h

∑
i j

√
(mi+1, j−mi, j)2 +(mi, j+1−mi, j)2. (9)

As we will demonstrate below, jointly imposing bound and
TV constraints, the latter by constraining the TV-norm to be
less than some positive parameter τ , drastically improves the
performance of WRI. TV penalties are widely used in image
processing to remove noise while preserving discontinuities
(Rudin et al., 1992). It is also a useful regularizer in a wide
variety of other inverse problems, especially when solving for
piecewise constant or piecewise smooth unknowns. For exam-
ple, TV regularization has been successfully used for electrical
inverse tomography (Chung et al., 2005) and inverse wave prop-
agation (Akcelik et al., 2002) and more recently in work by
Guo et al. (2013). Although these approaches are somewhat
similar, our formulation is different because we avoid expensive
evaluations of dense Gauss-Newton Hessians. Instead, we im-
pose the constraints in a cheap inner loop that does not involve
additional wave-equation solves.

SOLVING THE CONVEX SUBPROBLEMS

A key aspect of our work is that Equation 6, supplemented
with convex constraints, is amenable to large-scale problems
because it has an outer-inner loop structure. The outer loop
concerns the evaluation of the expensive gradient and Hessian
while the inner loop involves relatively cheap projections onto
the constraints. An computationally efficient way to solve the
inner convex subproblems is to modify Zhu and Chan (2008)’s
primal-dual hybrid gradient method and find saddle points of
the following Lagrangian (Esser et al., 2010; Chambolle and
Pock, 2011; He and Yuan, 2012; Zhang et al., 2010):

L (∆m,p) = ∆mT g+
1
2

∆mT (Hn +2cnI)∆m

+pT D(mn +∆m)− τ‖p‖dual TV

(10)

for mn +∆m ∈ Cbox and p the Lagrange multiplier. In this
expression, ‖p‖dual TV is the dual norm of the TV-norm, which
takes the maximum instead of the sum of the `2-norm of the
discrete gradients (denoted by D) at each point of model m. For
more details on the specific implementations of these iterations
including the projections on the TV-ball of size τ , we refer to
the technical report by Esser et al. (2014).



PRACTICAL ASPECTS

The above scaled gradients with convex constraints provide the
formal optimization framework with which we will carry out
our experiments. Before demonstrating the performance of our
approach, we discuss a number of practical considerations and
strategies to expedite and terminate the iterative inversion and
to make the inversion more robust to poor starting models and
complex geology.

Frequency continuation. We divide the frequency spectrum
into overlapping frequency bands of increasing frequency, in
order to further robustify the WRI approach against cycle skip-
ping.

Stopping criterion. As with all iterative schemes, some
sort of stopping criterion is needed. For each frequency
batch, we compute at most 25 outer iterations, each time
solving the convex subproblem to convergence, stopping
when max( ‖pk+1−pk‖

‖pk+1‖ ,
‖∆mk+1−∆mk‖
‖∆mk+1‖ )≤ 1×10−4. We compute

these outer iterations as long as the reduction of the overall
objective is larger than some predefined fraction of its quadratic
approximation ∆mT g+ 1

2 ∆mT (Hn + 2cnI)∆m at the current
model iterate.

Acceleration by randomized sampling. To reduce the com-
putational costs, we employ the widely-reported randomized
sampling technique (Krebs et al., 2009; van Leeuwen et al.,
2011; Haber et al., 2012) by considering N′s� Ns random mix-
tures of the sources qsv defined by

q jv =

Ns∑
s=1

w jsqsv j = 1, ...,N′s , (11)

where the weights w js ∈N (0,1) are drawn from a standard
normal distribution. We modify the synthetic data according to
ds

jv = PA−1
v (m)q jv and use the same strategy to solve the now

much smaller optimization problem.

Multiple passes through the data. Despite the fact that WRI
is expected to be less prone to local minima, restarting the
optimizations with warm starts at the low frequencies again
leads to superior results as reported by Peters et al. (2014). We
employ this strategy.

Relaxation of the TV constraint. Having included constraints
allows us to use a cooling technique during which the convex
constraint, the TV-norm in this case, is gradually relaxed. While
these type of continuation techniques have been used very suc-
cessfully towards the solution of linear problems with convex
constraints, devising these techniques for nonlinear problems
is still a topic of open research. We found empirically that
gradually relaxing the TV-constraint (τ) during the multiple
passes through the data greatly improved our results.

NUMERICAL EXPERIMENTS

As we have learned from the blind Chevron Gulf of Mexico
dataset, FWI is severely challenged when applied to regions
with high complexity for data that miss long offsets and low
frequencies (Herrmann et al., 2013). To demonstrate the added
value of WRI and of adding convex constraints to FWI or WRI,

we conduct a series of experiments on subsets of the 2004
BP velocity benchmark (Billette and Brandsberg-Dahl, 2005).
These experiments are aimed at demonstrating the benefits of
including TV-norm constraints for WRI in case of good and
bad starting model, WRI compared to FWI, and multiple passes
while relaxing the constraints.

Good starting model. Let us first consider, the results of WRI
with and without TV-norm regularization for the upper left part
of the BP model for a starting model obtained by smoothing.
The results for the first and second pass are included in Figure 1
and were obtained by carrying out the inversions from 3Hz to
20Hz in overlapping batches of two. The bound constraints on
the slowness squared are defined to correspond to minimum and
maximum velocities of 1400 and 5000m/s, respectively. The τ

parameter for the TV constraint is chosen to be .9 times the TV
of the ground-truth model. To reduce computation time, we use
only two simultaneous shots, which we redraw each time the
model is updated. From these figures it is clear that including
the edge-preserving TV-norm constraint greatly improves the
results by removing the source crosstalk while clearly delin-
eating the top and bottom of the salt. The figures also show
that the inversion improves dramatically when making a second
pass while relaxing the TV-norm constraint.

Bad initial model. As we can see from Figure 2, including TV-
norm constraints also yields excellent results when starting with
a model given by a simple gradient. The same applies when
we approximate the Gauss-Newton Hessian of the adjoint-state
method by Equation 5. This approximation, which is known
as the pseudo Hessian, yields good but slightly inferior results
compared to those of WRI. Both results were obtained via
multiple passes and benefit tremendously from adding the TV-
norm constraint and clearly delineate the top and bottom of
the salt. (Results from adjoint-state FWI without the TV-norm
constraint are very poor compared to the unconstrained WRI
(not shown).)

CONCLUSIONS AND FUTURE WORK

We presented a computationally feasible scaled-gradient projec-
tion algorithm for minimizing the quadratic penalty formulation
of full-waveform inversion proposed by van Leeuwen and Her-
rmann (2013a) subject to additional convex constraints. We
showed in particular how to solve convex subproblems that
arise when adding total-variation and bound constraints on the
model. The presented synthetic experiments clearly demon-
strate that full-waveform inversion in complex geological areas
can greatly improve by including convex constraints. This ob-
servation applies to conventional adjoint-state FWI, Wavefield
Reconstruction Inversion (WRI), and Adaptive Waveform In-
version (AWI). Both the top and bottom of the salt are well
recovered, which makes the presented method a candidate to
replace labour intensive salt flooding techniques. There are also
indications that the TV-norm constraint improves AWI from
reflection data only as reported elsewhere in these proceedings.

In future work, we still need to find a practical way of select-
ing the regularization parameter τ . The fact that significant
discontinuities can be resolved using small τ explains why
our continuation strategy that gradually increases τ yields im-



(a) (b) (c)

(d) (e) (f)

Figure 1: Top left portion of the BP 2004 velocity model (a), starting model (b), first pass w/o TV (c), second pass w/o TV (d), first
pass w/ TV and τ = 0.9τtrue (e), second pass w/ TV τ = 0.99τtrue(f).

(a) (b) (c)

Figure 2: Middle portion of the BP 2004 BP velocity model (a), recovered velocity with WRI and TV-constraint, recovered model
with adjoint-state FWI and TV-constraint.

proved results. These improvements stem from the fact that
the TV-constraint introduces reflecting boundaries, which aid
the inversion. A possible numerical framework for choosing
the regularization parameter could be along the lines of the
SPOR-SPG method in (van den Berg and Friedlander, 2011).
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