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SUMMARY

Recent developments in matrix rank optimization have allowed
for new computational approaches in the field of source sepa-
ration or deblending. In this paper, we propose a source sep-
aration algorithm for blended marine acquisition, where two
sources are deployed at different depths (over/under acquisi-
tion). The separation method incorporates the Hierarchical
Semi-Separable structure (HSS) inside rank-regularized least-
squares formulations. The proposed approach is suitable for
large scale problems, since it avoids SVD computations and
uses a low-rank factorized formulation instead. We illustrate
the performance of the new HSS-based deblending approach
by simulating an over/under blended acquisition, wherein uni-
formly random time delays (of < 1 second) are applied to the
one of the sources.

INTRODUCTION

The benefits of acquiring and processing over/under data are
clear; the recorded bandwidth is extended at both low and high
ends of the spectrum. The over/under acquisition method al-
lows separation of the up- and downgoing wavefields at the
source (or receiver) using a vertical pair of sources (or re-
ceivers) to determine wave direction (Moldoveanu et al., 2007).
Acquiring data with over/under sources is an instance of si-
multaneous acquisition, which generates blended datasets that
need to be separated into the individual, unblended datasets for
further processing.

The challenge of source separation or deblending has been
addressed by many researchers (Stefani et al., 2007; Moore
et al., 2008; Akerberg et al., 2008; Huo et al., 2009), wherein
the key observation has been that as long as the sources are
fired at suitably randomly dithered times, the resulting inter-
ferences (or source crosstalk) will appear noise-like in specific
gather domains such as common-offset and common-receiver,
turning the separation problem into a (random) noise removal
procedure. Inversion-type algorithms (Moore, 2010; Abma
et al., 2010; Mahdad et al., 2011; Doulgeris et al., 2012; Baard-
man and van Borselen, 2013) take advantage of sparse repre-
sentations of coherent seismic signals. Wason and Herrmann
(2013a,b) proposed an alternate sampling strategy for simul-
taneous acquisition (time-jittered marine) that leverages ideas
from compressed sensing (CS), addressing the deblending prob-
lem through a combination of tailored (blended) acquisition
design and sparsity-promoting recovery via convex optimiza-
tion using `1 constraints.

More recently, rank-minimization based techniques have been
used for source separation by Maraschini et al. (2012) and
Cheng and Sacchi (2013). The general idea is to exploit the
low-rank structure of seismic data when it is organized in a ma-

trix. Low-rank structure refers to the small number of nonzero
singular values, or quickly decaying singular values. Maras-
chini et al. (2012) followed the rank-minimization approach
proposed by Oropeza and Sacchi (2011), who identified that
seismic temporal frequency slices organized into a block Han-
kel matrix, in ideal conditions, is a matrix of rank k, where k is
the number of different plane waves in the window of analysis.
These authors showed that additive random noise increase the
rank of the block Hankel matrix, and the authors presented an
iterative algorithm that resembles seismic data reconstruction
with the method of projection onto convex sets, where they use
a low-rank approximation of the Hankel matrix via the ran-
domized singular value decomposition (Liberty et al. (2007);
Halko et al. (2011a)) to interpolate seismic temporal frequency
slices. While this technique may be effective interpolating data
with a limited number of distinct dips, the approach requires
embedding the data into an even larger space where each di-
mension of size n is mapped to a matrix of size n×n and that
forces them to work on small windows and now choosing the
size of these windows becomes a factor.

In this paper, we avoid the direct approach to rank-minimization
that involves computing singular value decompositions (SVD)
of the matrices and follow instead the approach proposed by
Aravkin et al. (2013); Kumar et al. (2013) and the references
therein. The key idea here is that the monochromatic fre-
quency slices of the fully sampled data matrix have low-rank
structure in the midpoint-offset (m-h) domain, whereas, data
with random noise increases the rank of the resulting frequency
slice in the m-h domain. Seismic frequency slices exhibit low-
rank structure in the m-h domain at low-frequencies, but not at
high-frequencies. This behaviour is due to the increase in os-
cillations as we move from low to high-frequency slices in the
m-h domain, even though the energy remains focused around
the diagonal (Kumar et al., 2013).

Rank-minimization in the high-frequency range requires ex-
tended formulations that incorporate low-rank structure. While
Engquist and Ying (2010) propose to overcome this difficulty
by proposing directional low-rank approximations for Green’s
functions of the acoustic wave equation in 3D, we rely in-
stead on the Hierarchically Semi-Separable matrix representa-
tion (HSS) method proposed by Chandrasekaran et al. (2006)
to represent frequency slices. The key idea in the HSS repre-
sentation is that certain full-rank matrices, e.g., matrices that
are diagonally dominant with energy decaying along the off-
diagonals, can be represented by a collection of low-rank sub-
matrices.

Following the same ideas, in an over/under simultaneous ac-
quisition, we observe that monochromatic frequency slices of
the fully sampled blended data matrix, with periodic firing
times, have low-rank structure in the m-h domain, whereas,
uniformly random time delays applied to one or both sources,



increase the rank of the resulting frequency slice in the m-h
domain. Hence, the blended data in over/under randomized
acquisition is separated into its constituent source components
using a fast optimization approach that combines the (SVD-
free) matrix factorization approach recently developed by Lee
et al. (2010) with the Pareto curve approach proposed by Berg
and Friedlander (2008).

The paper is organized as follows. We start by explaining the
methodology to perform source separation by combining the
HSS structure with factorization-based rank-regularized opti-
mization formulations (Lee et al., 2010). Next, we demon-
strate the successful implementation of the proposed source
separation strategy on a simulated dataset. In addition, we
also make comparisons with the sparsity-promoting deblend-
ing techniques.

THEORY

The success of rank-minimization hinges on the fact that regu-
larly sampled target dataset should exhibit a low-rank structure
in rank-revealing ”transform domain”. Kumar et al. (2013)
showed that the frequency slices of unblended seismic data do
not exhibit a low-rank structure in the source-receiver (s-r) do-
main since strong wavefronts extend diagonally across the s-r
plane. However, transforming the data into the m-h domain re-
sults in a vertical alignment of the wavefronts, thereby reduc-
ing the rank of the frequency slice matrix. In the low frequency
slices, this vertical alignment can be accurately approximated
by a low-rank representation. On the other hand, high fre-
quency slices include a variety of wave oscillations that in-
crease the rank. However, Kumar et al. (2013) mentioned that
it is possible to find accurate low-rank approximations of sub-
matrices of the high-frequency slices by partitioning the data
into a Hierarchical Semi-Separable (HSS) structure. The HSS
structure first partitions a matrix into diagonal and off-diagonal
submatrices. The same partitioning structure is then applied
recursively to the diagonal sub-matrices only, since these sub-
matrices still possess high rank structure.

In this paper, we consider an over/under blended acquisition
scenario with two sources placed at different depths with an
interval of 5 m. We observe that the monochromatic frequency
slices of the blended data, with periodic firing times of sources,
have low-rank structure in the m-h domain, while the frequency
slices of the blended data with uniformly random firing time
delays applied to the second source, do not. Note, that we
have fully sampled data in both cases. Figures 1 (a,b) show the
monochromatic frequency slice at 25 Hz in the m-h domain
of the blended data with periodic firing times of both sources,
and with uniformly random firing time delays of the second
source, respectively.

Randomization of the time delays increases the rank or makes
the singular values decay less quickly in the m-h domain, an
essential feature for rank-minimization techniques to be effec-
tive. To illustrate this behaviour, we plot the decay of the
singular values of blended data in Figure 2. Note that uni-
formly random firing time delays does not noticeably change
the decay of the singular values in the s-r domain, as expected,

but significantly slow down the decay rate in the m-h domain
as shown in Figures 2(a) and 2(b). Therefore, low-frequency
slices of unblended datasets can be reconstructed by solving
the rank-minimization problem in the m-h domain, while high-
frequency slices can be reconstructed by first performing an
HSS partitioning and then solving the rank-minimization prob-
lem on each partition in its respective m-h domain (Kumar
et al., 2013).

Source separation
Let X0 be a matrix in Cn×m and let A be a linear measure-
ment operator that maps from Cn×m → Cp with p� n×m.
Recht et al. (2010) showed that under certain general condi-
tions on the operator A , the solution to the rank-minimization
problem can be found by solving the following nuclear-norm
minimization problem:

min
X
||X ||∗ s.t. ‖A (X)−b‖2 ≤ ε, (BPDNε )

where b is a set of measurements, ‖X‖∗ = ‖σ‖1, and σ is the
vector of singular values. In the case of over/under simultane-
ous acquisition, given two unblended data matrices X1 and X2
and blended data measurements b, we can redefine our systems
of equations as

A︷ ︸︸ ︷[
MS H MTS H]

X︷ ︸︸ ︷[
X1
X2

]
= b, (1)

where M is the sampling operator, S is the transformation
operator from the s-r domain to the m-h domain, H denotes the
Hermitian transpose, and T is defined as a time delay operator
which applies the uniformly random time delays to the second
source.

In order to efficiently solve (BPDNε ), we use an extension of
the SPG`1 solver (Berg and Friedlander, 2008) developed for
the (BPDNε ) problem in Aravkin et al. (2012). The SPG`1
algorithm finds the solution to the (BPDNε ) by solving a se-
quence of LASSO subproblems

min
X
‖A (X)−b‖2 s.t. ||X ||∗ ≤ τ, (LASSOτ )

where τ is updated by traversing the Pareto curve. Solving
each LASSO subproblem requires a projection onto the nu-
clear norm ball ‖X‖∗ ≤ τ in every iteration by performing a
singular value decomposition and then thresholding the singu-
lar values. In the case of large scale seismic problems, it be-
comes prohibitively expensive to carry out such a large num-
ber of SVDs. Instead, we adopt a recent factorization-based
approach to nuclear-norm minimization (Rennie and Srebro,
2005; Lee et al., 2010; Recht and Ré, 2011). The factoriza-
tion approach parametrizes the matrix (X1, X2) ∈ Cn×m as the
product of two low rank factors (L1, L2) ∈ Cn×k and (R1, R2)
∈ Cm×k, such that,

X =

[
L1RH

1
L2RH

2

]
(2)

The optimization scheme can then be carried out using the fac-
tors (L1,L2) and (R1,R2) instead of (X1,X2), thereby signifi-
cantly reducing the size of the decision variable from 2nm to



2k(n+m) when k� m,n. Rennie and Srebro (2005) showed
that the nuclear norm obeys the relationship

‖X‖∗ ≤
1
2

∥∥∥∥[L1
R1

]∥∥∥∥2

F
+

1
2

∥∥∥∥[L2
R2

]∥∥∥∥2

F
=: Φ(L1,R1,L2,R2), (3)

where ‖ · ‖2
F is the Frobenius norm of the matrix (sum of the

squared entires).

Consequently, the LASSO subproblem can be replaced by

min
L1,R1,L2,R2

‖A (X)−b‖2 s.t. Φ(L1,R1,L2,R2)≤ τ , (4)

where the projection onto Φ(L1,R1,L2,R2)≤ τ is easily achieved
by multiplying each factor (L1,L2) and (R1,R2) by the scalar√

2τ/Φ(L,R). By equation (3) for each HSS sub-matrix in the
m-h domain, we are guaranteed that ‖X‖∗ ≤ τ for any solution
of (4). Once the optimization problem is solved, we trans-
form each sub-matrix back from the m-h to the s-r domain,
where we concatenate all the sub-matrices to get the deblended
monochromatic frequency data matrices. One of the advan-
tages of HSS representation is that it works with the recursive
partitioning of a matrix, and sub-matrices can be solved in par-
allel, speeding up the optimization formulation.

NUMERICAL RESULTS

We illustrate the performance of our proposed algorithm on
data generated from the BG compass model using the IWAVE
software. With a source (and) receiver sampling of 25.0 m,
one dataset is generated with a source-depth of 10.0 m (Fig-
ure 3a), while the other dataset has the source at 15.0 m depth.
Each dataset has Nt = 1024 time samples, Nr = 129 receivers
and Ns = 129 shots. To simulate the over/under blended acqui-
sition scenario, the two datasets are (simply) summed for the
periodic case, while uniformly random time delays between 0-
1 second are applied to the dataset of the second source (Fig-
ure 3b) for the randomized case. Figure 3c shows the result-
ing blended shot gather. Since the time delays are less than
a second, we call this scenario the low variability randomized
acquisition. Using the proposed rank-minimization technique,
we are able to successfully deblend the blended shot gathers
into its constituent source components as illustrated in Fig-
ures 4(a,b). Figures 4(e,f) show the difference between the un-
blended shot gathers and the (recovered) deblended shot gath-
ers of source 2 and source 1, respectively.

It is well known that seismic data admit sparse representations
by curvelets that capture “wavefront sets” efficiently (Smith,
1998; Candès and Demanet, 2005; Candès et al., 2006; Her-
rmann et al., 2008). Therefore, we also compare the proposed
rank-minimization based deblending algorithm with the sparsity-
promoting deblending technique. Here, we use (BPDNε ) for-
mulation to minimize the `1 norm instead of the nuclear norm,
and the transformation operator S is the 2-D curvelet oper-
ator. Figures 4(c,b) show the deblended shot gathers using
sparsity-promoting based techniques and Figures 4(g,h) show
the corresponding difference plots between the unblended shot
gathers and the (recovered) deblended shot gathers of source
2 and source 1, respectively. It can be clearly seen that source
separation via sparsity-promotion does not help to deblend the
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Figure 1: Monochromatic frequency slice at 25 Hz in the m-
h domain for blended data (a) with periodic firing times for
both sources, and (b) with uniformly random firing times of
the second source.

blended dataset especially in this low variability scenario. To
understand this behaviour, we plot the decay of the curvelet
coefficients (Figure 2c) of the monochromatic frequency slice
at 25 Hz in the s-r domain, for the periodic and the randomized
blended acquisition. For this low variability scenario, the ran-
domization does not destroy the sparse structure of the data,
i.e., does not decrease the decay of the curvelet coefficients
significantly, which is an essential requirement for sparsity-
promoting deblending techniques as shown in Wason and Her-
rmann (2013a,b), which can be termed as the high variability
randomized acquisition scenario.

CONCLUSIONS

We have presented a new method for source separation in an
over/under acquisition scenario, where we incorporate the HSS
structure with factorization-based rank-regularized optimiza-
tion formulations. We combine the Pareto curve approach for
optimizing (BPDNε ) formulations with the SVD-free matrix
factorization methods to solve the nuclear-norm optimization
formulation. The proposed rank-minimization source separa-
tion technique helps in deblending the blended datasets in the
low variability randomized acquisition scenarios as observed
here. The experimental results demonstrate the potential bene-
fit of this methodology. Incorporating HSS into this scheme
is very promising, since we can attack high-rank structures
using the partitioning, and in addition gain a computational
advantage by optimizing each sub-block in parallel. In real-
ity, seismic data are typically irregularly sampled along spa-
tial axes, therefore, future work includes working with non-
uniform sampling grids for 2-D and 3-D seismic.
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Figure 2: Decay of singular values for a frequency slice (at 25 Hz) of blended shot gather, with (a) periodic, and (b) uniformly
random firing time delays of the second source. (c) Decay of the curvelet coefficients in s-r domain for case (a,b).
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Figure 3: (a) Unblended shot gather of source 1, (b) Unblended, uniformly random time-delayed shot gather of source 2, (c)
Blended shot gather.

Trace number

T
im

e
 (

s
)

20 40 60 80 100 120

1

2

3

4

(a)

Trace number

T
im

e
 (

s
)

20 40 60 80 100 120

1

2

3

4

(b)

Trace number

T
im

e
 (

s
)

20 40 60 80 100 120

1

2

3

4

(c)

Trace number

T
im

e
 (

s
)

20 40 60 80 100 120

1

2

3

4

(d)

Trace number

T
im

e
 (

s
)

20 40 60 80 100 120

1

2

3

4

(e)

Trace number

T
im

e
 (

s
)

20 40 60 80 100 120

1

2

3

4

(f)

Trace number

T
im

e
 (

s
)

20 40 60 80 100 120

1

2

3

4

(g)

Trace number

T
im

e
 (

s
)

20 40 60 80 100 120

1

2

3

4

(h)

Figure 4: Deblended shot gathers of source 2 and source 1 using HSS based rank-minimization (a,b) and using curvelet based
sparsity-promoting technique (c,d). (e,f,g,h) Difference of deblended shot gathers from unblended shot gathers (Figure 3 (a,b)).
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