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SUMMARY

We present an extension of our time-jittered simultaneous ma-
rine acquisition to time-lapse surveys where the requirement
for repeatability in acquisition can be waived provided we
know the acquisition geometry afterwards. Our method, which
does not require repetition, gives 4-D signals comparable to
conventional methods where repeatability is key to their suc-
cess.

INTRODUCTION
Current efforts towards dense shot (and/or receiver) sampling
and full azimuthal coverage to produce higher-resolution im-
ages have led to the deployment of multiple source vessels
across marine survey areas. A step ahead from multi-source
seismic acquisition is simultaneous or blended acquisition where
multiple source arrays/vessels fire shots at random times re-
sulting in overlapping shot records. Deblending (or source
separation) then aims to recover unblended data, as acquired
during conventional acquisition, from blended data since many
seismic processing techniques, e.g. AVO analysis, SRME,
EPSI, wave-equation based inversion techniques such as RTM
and FWI rely on full, regular sampling.

Seismic acquisition literature contains a whole slew of works
that have explored the concept of simultaneous source activa-
tion (Beasley et al., 1998; de Kok and Gillespie, 2002; Beasley,
2008; Berkhout, 2008; Hampson et al., 2008; Moldoveanu and
Fealy, 2010; Abma et al., 2012, 2013; Berkhout, 2012). The
challenge of deblending has been addressed by many researchers
(Stefani et al., 2007; Moore et al., 2008; Akerberg et al., 2008;
Huo et al., 2009), wherein the key observation has been that
as long as the sources are fired at suitably randomly dithered
times, the resulting interferences (or source crosstalk) will ap-
pear noise-like in specific gather domains such as common-
offset and common-receiver, turning the separation problem
into a (random) noise removal procedure. Inversion-type algo-
rithms (Moore, 2010; Abma et al., 2010; Mahdad et al., 2011;
Doulgeris et al., 2012; Baardman and van Borselen, 2013) take
advantage of sparse representations of coherent seismic sig-
nals. Wason and Herrmann (2013a,b) proposed an alternate
sampling strategy for simultaneous acquisition (time-jittered
marine) that leverages ideas from compressed sensing (CS),
addressing the deblending problem through a combination of
tailored (blended) acquisition design and sparsity-promoting
recovery via convex optimization using `1 constraints.

In the current paradigm of 4-D (or time-lapse) seismic, re-
peatability of the acquisition surveys is of utmost importance
(Lumley and Behrens, 1998). Recently, Oghenekohwo et al.
(2014) showed that the requirement for repeatability in time-
lapse surveys can be relaxed, following recent breakthroughs
in CS, where randomized sampling of data is vehemently sup-
ported. The authors propose an application of the Joint Re-

covery Method (JRM), introduced by Baron et al. (2005), to
the processing of randomly (under)sampled time-lapse data,
by exploiting the fact that the signals to be recovered share a
lot of information, which is typical of the data acquired during
the (4-D) baseline and monitor surveys, and hence, allows us
to relax the strict repetition.

In this paper, we extend our work on time-jittered, blended ma-
rine acquisition to time-lapse surveys by simulating the blended
acquisition scenario on a real 4-D data set and apply the JRM
to reconstruct time-lapse wave fields which have been acquired
with different acquisition geometries for the baseline and mon-
itor surveys. The paper is organized as follows. First, we ex-
plain the theory starting with a brief overview of compressed
sensing, followed by a description of the time-jittered marine
acquisition setup and its extension to time-lapse surveys. Next,
we demostrate the successful implementation of the proposed
strategy via numerical experiments and conclude with the ob-
servations made.

THEORY
Compressed sensing
Recently, compressed sensing (CS, Donoho, 2006; Candès and
Tao, 2006) has emerged as a novel nonlinear sampling paradigm
in which randomized sub-Nyquist sampling is used to cap-
ture the structure of the data/signal that have a sparse or com-
pressible representation in some transform domain, i.e., if only
a small number k of the transform coefficients are nonzero
or if the data can be well approximated by the k largest-in-
magnitude transform coefficients.

For a high-dimensional signal f0 ∈ RN , the goal in CS is to
obtain f0 (or an approximation) from nonadaptive linear mea-
surements y = Ψf0, where Ψ is an (appropriate) n×N mea-
surement matrix with n� N, hence, the underdetermined sys-
tem of linear equations y = Ψf0, has infinitely many solutions.
If the signal admits a sparse representation x0 in some trans-
form domain S, then f0 = SHx0, where H denotes the Hermi-
tian transpose (or adjoint). Seismic signals admit sparse ap-
proximations in terms of curvelets (see e.g. Candès and De-
manet, 2005; Candès et al., 2006a; Herrmann et al., 2008, and
the references therein). Since, curvelets are a redundant frame
(an overcomplete sparsifying dictionary), here, S∈CP×N with
P > N, and x0 ∈ CP.

Utilizing the prior knowledge that f0 is sparse, i.e., x0 is sparse,
CS aims to recover the signal by solving the sparse recovery
problem, which finds the solution x̃ of the underdetermined
system with the smallest number of nonzero entires. However,
the sparse recovery problem is a combinatorial problem and
quickly becomes intractable as the dimension increases. In-
stead, CS specifies conditions (Candès et al., 2006b; Donoho,
2006) under which the sparse recovery problem is equivalent



to the basis pursuit (BP) convex optimization problem

x̃ = argmin
x∈CP

‖x‖1 subject to y = Ax, (1)

where the `1 norm ‖x‖1 is the sum of absolute values of the
elements of a vector x, and A = ΨSH , an n×P matrix. Be-
ing computationally tractable, the BP problem can be solved
to obtain an approximation (x̃) of x0. The matrix Ψ can be
expressed as the product of a n×N restriction matrix R and
an N×N measurement matrix M, i.e., Ψ = RM. Hence, A :=
RMSH . Among all possible solutions of the (severely) under-
determined system of linear equations (y = Ψf0 = Ax0), the
BP problem typically finds a sparse or (under some conditions)
the sparsest solution that explains the measurements exactly.

Time-jittered marine acquisition
In Wason and Herrmann (2013b), we presented a pragmatic
simultaneous marine acquisition scheme that leverages the CS
ideas of invoking randomness in the acquisition, since random
undersampling renders coherent aliases, i.e., interferences due
to overlapping shot records in simultaneous acquisition, into
harmless incoherent random noise. This effectively turns the
deblending problem into a relatively simple denoising prob-
lem. Since, random undersampling does not provide a control
on the maximum gap size between adjacent measurements,
which is a practical requirement of wavefield reconstruction
with localized sparsifying transforms such as curvelets (Hen-
nenfent and Herrmann, 2008), we use jittered undersampling,
which shares the benefits of random undersampling and offers
control on the maximum gap size. Therefore, in time-jittered
marine acquisition the source vessels map the survey area fir-
ing shots at jittered time-instances, which translate to jittered
shot locations for a given speed of the source vessel.

Figure 1(a) illustrates a conventional acquisition scheme where
one source vessel carrying two airgun arrays fires every 20.0
s (or 50.0 m) travelling at about 5 knots (∼2.5 m/s) resulting
in non-overlapping shot records. In time-jittered acquisition
(Figure 1(b)), the airgun arrays fire at every 20.0 s (or 50.0
m) jittered time-instances (or shot locations) with the receivers
(OBC/OBN) recording continuously, resulting in overlapping
(or blended) shot records. The minimum interval between the
jittered times (or shots) is maintained at 10.0 s (or 25.0 m,
typical interval required for aigun-recharge) and the maximum
interval is 30.0 s (or 75.0 m). Both arrays fire at the 50.0 m
jittered grid independent of each other. If conventional acqui-
sition could be carried out at shot intervals of 12.5 m, then
acquisition on the 50.0 m jittered grid would be a result of an
undersampling factor, η = 2 (and not 4) because there are two
airgun arrays firing in a time-jittered manner.

Time-lapse marine acquisition
Given a baseline pre-stack data volume and monitor pre-stack
data volume, the 4-D signal in time is revealed by subtracting
one data volume from the other. As mentioned in Ogheneko-
hwo et al. (2014), an alternative of processing the randomly
undersampled time-lapse data is to reconstruct the baseline and
monitor wavefields independently via the Independent Recov-
ery Strategy (IRS).

One realization of time-jittered blended marine acquisition re-
sults in a baseline measurements represented by y1, and an-
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Figure 1: (a) Conventional marine acquisition with one source
vessel and two airgun arrays. (b) Time-jittered marine acqui-
sition (with an undersampling factor of 2).

other realization results in monitor measurements represented
by y2. Incorporating the information about these two different
survey geometries in the operators A1 and A2, we can solve
Eq. 1 to recover the deblended and interpolated baseline and
monitor datasets and the inherent 4-D signal. The IRS simply
inverts for the baseline and monitor data by solving two BP
problems independently, i.e.,

x̃1 = argmin
x2
‖x1‖1 subject to y1 = A1x1 (2)

x̃2 = argmin
x2
‖x2‖1 subject to y2 = A2x2. (3)

The JRM, on the other hand, performs a joint inversion by tak-
ing into account the shared information between the time-lapse
data. In this model, we define x1 = z0 + z1 and x2 = z0 + z2
where z0 represents the shared information between the base-
line and monitor data; z1 and z2 are the information contribut-
ing to the differences in the data. The additional variable (z0)
in the system of equations leads to solving the following con-
vex optimization problem:

z̃ = argmin
z
‖z‖1 subject to y = Az, (4)



where A =
[

A1 A1 0
A2 0 A2

]
, z =

z0
z1
z2

, and y =

[
y1
y2

]
.

The estimate z̃ can then be used to reveal the (estimated) 4-D
signal which should be relatively clearer than that estimated
via IRS since the JRM incorporates the shared information.

CASE STUDY AND CONCLUSIONS
We illustrate the performance of our proposed JRM by sim-
ulating two realizations of the time-jittered marine acquisition
on a real 4D dataset that we downloaded from a public domain.
With a source and receiver sampling of 12.5 m, the subsam-
pling factor for the blended acquistion is 2. We work with a
data cube of Nt = 501 time samples, Nr = 100 receivers, and
Ns = 100 shots. In both the IRS and JRM, we recover the
sequential, fully sampled data (from the blended data) using 2-
D curvelets Kroneckered with 1-D wavelets as the sparsifying
transform.

Figure 3 summarizes the recovery results from IRS and JRM
for both the baseline and monitor data. One of the initial obser-
vations is that the original 4-D signal (plot 1 in Figure 3(c)),
i.e., the difference between the shot gathers from the origi-
nal baseline (plot 1 in Figure 3(a)) and monitor (plot 1 in Fig-
ure 3(b)) data, is very noisy. The difference plots of the IRS
recovered (i.e., deblended and interpolate) baseline (plot 3 in
Figure 3(a)) and monitor (plot 3 in Figure 3(b)) shot gathers
corroborate this observation revealing that the monitor data is
less noisier than the baseline data. Hence, the IRS estimated
4-D signal is severely affected by this noise.

The fact that one of the original datasets is noisier than the
other also affects the JRM recovery for the baseline (plot 4,5
in Figure 3(a)) and monitor (plot 4,5 in Figure 3(b)) data, be-
cause the noise leaks from the former into the latter during the
joint recovery process. However, this is still a better recovery
strategy than the IRS since it exploits the shared information in
the two datasets as can be seen by the much cleaner estimated
4-D signal in plot 3 in Figure 3(c). The corresponding IRS and
JRM estimated stack sections, in Figure 2(c) and Figure 2(d),
also supports our preference of the JRM over the IRS.

In conclusion, time-jittered blended marine acquisition can be
extended to time-lapse surveys. The results show that the re-
quirement for repeatability in time-lapse surveys can be re-
laxed. Future work includes working with non-uniform sam-
pling grids.
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Figure 2: Stack sections of (a) original baseline data, (b) orig-
inal 4-D signal, (c) 4-D signal recovered via IRS, and (d) 4-D
signal recovered via JRM.
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Figure 3: (a) baseline, (b) monitor, and (c) 4-D signal.
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