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SUMMARY

Multi-Parameter full-waveform inversion is a challenging prob-
lem, because the unknown parameters appear in the same wave
equation and the magnitude of the parameters can vary many or-
ders of magnitude. This makes accurate estimation of multiple-
parameters very difficult. To mitigate the problems, sequential
strategies, regularization methods and scalings of gradients and
quasi-Newton Hessians have been proposed. All of these re-
quire design, fine-tuning and adaptation to different waveform
inversion problems. We propose to use a sparse approximation
to the Hessian derived from a penalty-formulation of the objec-
tive function. Sparseness allows to have the Hessian in memory
and compute update directions at very low cost. This results
in decent reconstruction of the multiple parameters at very low
additional memory and computational expense.

INTRODUCTION

Multi-parameter waveform inversion is not a new topic, (Taran-
tola, 1986) proposes a strategy of inverting for different param-
eters sequentially. Other research in multi-parameter inversion
relates to multiple parameters in multiple PDE’s, such as joint
inversion of electromagnetic and seismic data. In this area of
research a regularization approach was used to promote struc-
turally similar models (Gallardo & Meju, 2004). Some more
recent examples in multi-parameter full waveform inversion are
Lavoué, Brossier, Métivier, Garambois, & Virieux (2014) and
Prieux, Brossier, Operto, & Virieux (2013).

Because regularization which promotes structural similarity
relies on a priori information on the geology and sequential
inversion strategies may have to be redesigned and fine-tuned
for different parameters or different datasets. We will not use
any of those ideas in this abstract. Although these sequential
inversion and regularization concepts can definitely be very
successful, we focus our efforts on fully automatic inversion
with minimal use of a priori information and a minimum amount
of user intervention to asses if it is a viable alternative to the
methods mentioned above.

In this abstract we seek improvement on the gradient based
methods (including quasi-Newton methods) by using Hessian
information. Our formulation is based on the penalty formu-
lation of the waveform inversion problem as introduced for
waveform inversion by Leeuwen & Herrmann (2013). We ex-
tend their formulation to the multi-parameter case and derive a
sparse Gauss-Newton type approximation to the Hessian. This
type of approximation will not be possible when using the
adjoint-state method to solve the Lagrangian formulation of a
PDE-constrained optimization problem.

Using simple numerical experiments we illustrate the effect of

our Hessian approximation and apply it to a multi-parameter
waveform inversion problem.

WAVEFIELD RECONSTRUCTING INVERSION FOR-
MULATION

We start by defining the equations we wish to use to invert
the measured waveforms. The second order partial differential
equation (PDE) that describes the acoustic wave motion is

∂rb∂k p+ω
2
κ p = q. (1)

This is the Helmholtz equation for a lossless and isotropic
medium where there are only volume-injection (monopole)
sources. In this abstract we only consider measurements of the
pressure field p. Our unknown parameters which we want to
invert are the buoyancy b and the compressibility κ . The com-
pressibility, buoyancy and velocity (c) in an acoustic medium
are related as κ = b

c2 .

The general waveform inversion problem is following PDE-
constrained optimization problem (in discrete form):

min
b,κ,u

1
2
‖Pu−d‖2

2 s.t. A(b,κ)u = q. (2)

P is a linear projection operator onto the receiver locations,
A is the discretized two-paramter Helmholtz matrix, u is the
pressure wavefield, q is the source term and d is the measured
data. The two parameters to be estimated are the buoyancy b
and the compressibility κ . Following Leeuwen & Herrmann
(2013), we use the Wavefield Reconstructing Inversion (WRI)
methodology by using the penalty objective

min
b,κ,u

φλ (b,κ,u) =
1
2
‖Pu−d‖2

2 +
λ 2

2
‖A(b,κ)u−q‖2

2. (3)

Eq.3 is a combination of data-misfit and PDE-misfit, where
the scalar λ determines the importance of each. This is now
an unconstrained problem, generated by removing the PDE-
constraint and adding it as a quadratic penalty term. We proceed
by applying a variational projection as in Aravkin & Leeuwen
(2012) to eliminate the field variable by solving

ū = argmin
u

∥∥∥∥(λA(b,κ)
P

)
u−
(

λq
d

)∥∥∥∥
2

(4)

to obtain the reduced form

min
b,κ

φ̄λ (b,κ) =
1
2
‖Pū−d‖2

2 +
λ 2

2
‖A(b,κ)ū−q‖2

2. (5)

Using this formulation, we update the fields ū first, and then
update the medium parameters. In other words, we first recon-
struct the wavefield, given the PDE and observed data, then
we use that field to update the model. So at each iteration of
an optimization algorithm, we solve the least-squares problem



and find an update direction using an optimization algorithm
of choice. The misfit and gradients can be accumulated as a
running sum over frequencies and sources. Therefore, only one
field has to be in memory at a time.

To compute gradients and Hessians we need the partial deriva-
tives of the PDE w.r.t the two parameters which are

Gb = ∂A(b,κ)ū/∂b
Gκ = ∂A(b,κ)ū/∂κ.

(6)

Because of the parameterization choice, the partial derivative
w.r.t one parameter does not depend on the other. These partial
derivatives can be used to write down the gradient of the reduced
objective function (eq.5):

∇bφ̄λ = λ
2G(b, ū)∗

(
A(b,κ)ū−q

)
∇κ φ̄λ = λ

2G(κ, ū)∗
(
A(b,κ)ū−q

)
.

(7)

The structure of these gradients reveal that a perturbation in the
compressibility will induce a nonzero gradient for the buoyancy
and vice versa. This is the result of the occurrence of both
parameters the Helmholtz equation and is one of the reasons
multi-parameter inversion of parameters occurring in the same
equation is challenging.

OBTAINING A SPARSE APPROXIMATION TO THE
REDUCED HESSIAN WITHOUT COMPUTATIONAL
COST

The gradients (eq.7) of the reduced objective (eq.5) can be used
for gradient descent-type methods. We will not study these,
because the linear convergence rate will make this method in-
feasible for difficult problems with an ill-conditioned Hessian.
Quasi-Newton methods can provide a faster superlinear rate
of convergence. The Hessian, of which L-BFGS tries to iter-
atively obtain an approximation with low-rank updates, has a
block structure, where the blocks corresponding to different un-
knowns can have widely varying Frobenius norms. This results
in strong ill-conditioning (can be many orders of magnitude
above machine precision). It is therefore questionable how
much sense the L-BFGS approximation will make. It is possi-
ble to initialize the L-BFGS Hessian with a diagonal to correct
for scale differences between Hessian blocks corresponding to
the different parameters. This initialization remains a far from
trivial choice that has to be made and although sensible and
physically inspired choices can be made, the information is not
provided by the problem at hand directly. Diagonal scaling can
improve compared to the case where just the gradient is used
however. See Lavoué et al. (2014) for a nice discussion about
the difficulties of multi-parameter inversion and the L-BFGS
Hessian. These disappointing results are the motivation to use
Hessian information. We begin by deriving the Hessian matrix
corresponding to the reduced objective (eq.5). Note that the
Hessian and Newton system for the full objective (eq.3) are
given by∇2

u,uφλ ∇2
u,κ φλ ∇2

u,bφλ

∇2
κ,uφλ ∇2

κ,κ φλ ∇2
κ,bφλ

∇2
b,uφλ ∇2

b,κ φλ ∇2
b,bφλ


δu

δκ

δb

=

∇uφλ

∇κ φλ

∇bφλ

 .

(8)

Solving the least-squares problem in eq.4 is equivalent to set-
ting the first order optimality condition of eq.3 w.r.t u to zero:
∇uφλ (ū,κ,b) = 0 and then applying block-Gaussian elimina-
tion for the δu variable from the full Newton system (eq.8).
Another point of view is that the resulting reduced Hessian
is the Schur-complement of the full Hessian. To write this
compactly, partition the Hessian in eq.8 as(

E B
C D

)
. (9)

The Schur complement follows as(
D−CE−1B

)(δκ

δu

)
=

(
∇κ φλ

∇bφλ

)
−CE−1

∇uφλ (ū,κ,b)

(10)

which instantly simplifies to(
D−CE−1B

)(δκ

δu

)
=

(
∇κ φλ

∇bφλ

)
, (11)

because we set ∇uφλ (ū,κ,b) = 0 by solving eq.4. One of the
main disadvantages of the reduced Hessians, for both penalty
and Lagrangian objective formulations, is that they are dense.
This can be readily observed by noting the appearance of the
A−1 block in the system (see Haber, Ascher, & Oldenburg, 2000
for the reduced Hessian based on a Lagrangian objective). This
results in enormous memory requirements making it usually
impossible to store it in memory for medium sized 2D and
larger seismic applications. The reduced dense Hessian can still
be used by computing matrix-free matrix-vector products to
compute the Newton direction iteratively, see Métivier, Brossier,
Virieux, & Operto (2013) for this method in the waveform
inversion context. Matrix-free evaluations cost expensive extra
PDE or least-squares system solves. Moreover, these matrix-
free matrix-vector products use a chain of linear-system solves,
inducing complex and amplified error propagation. Therefore
this strategy is less suitable for inexact iterative linear-system
solution strategies.

The key contribution of this abstract follows here. We will
make two approximations to the reduced Hessian. This Hes-
sian originating from the penalty objective formulation can be
split in a dense (CA−1B) and a sparse part (D). As the first
approximation, we choose to approximate the reduced Hessian
by only its sparse part, D. The accuracy of this approximation
depends on the choice of the scalar λ , it is more accurate for a
small λ . The penalty objective is equivalent to the constrained
Lagrangian formulation for λ ↑ ∞. The use of the sparse part
enables us to have it in memory and compute exact Newton-
type directions at very low cost, as explained next. Thus, after
the first approximation we have the following Hessian:(

∇2
κ,κ φλ ∇2

κ,bφλ

∇2
b,κ φλ ∇2

b,bφλ

)
. (12)

The second approximation is to drop the off-diagonal blocks
from this sparse part. These blocks can be used to obtain an al-
gorithm which has potentially a better rate of convergence, but
this topic is not explored in this abstract. Our final approxima-
tion to the reduced Hessian which we will use in the numerical



examples below is given by

H̃ =

(
∇2

κ,κ φλ 0
0 ∇2

b,bφλ

)
=

(
G∗κ Gκ 0

0 G∗bGb

)
. (13)

We summarize the important properties of this Hessian ap-
proximation which we will refer to as a sparse Gauss-Newton
approximation: 1) positive-definiteness, 2) Hermitian and 3)
sparse. These properties make the Gauss-Newton step

pgn =

(
G∗κ Gκ 0

0 G∗bGb

)−1(
∇bφ̄λ

∇κ φ̄λ

)
(14)

cheap to compute. The block structure enables parallel solution
of both nonzero blocks. The content of these blocks depends of
the specific parameterization and discretization used. Here we
follow the disretize-then-optimize approach and discretize such
that Gκ is a diagonal matrix. Inverting G∗κ Gκ is then trivial.
The buoyancy in the Helmholtz equation (eq.1) is connected
to differential operators and that is why the partial derivative
w.r.t the buoyancy (Gb) will contain a differential operator. The
block G∗bGb cannot be trivially inverted, but it is just one extra
PDE-solve on top of all the linear systems that have to be solved
each iteration (eq. 4) to obtain the fields. Note that this block
is also symmetric positive definite and suitable for efficient
iterative solvers and preconditioners. Therefore this sparse
approximate reduced Hessian approach does not consume a lot
of storage, does not take any significant computations to form
and the solution of the Gauss-Newton system (eq.14) gives rise
to a minor contribution to the total computational cost of the
Gauss-Newton waveform inversion algorithm. Below is the
final algorithm in a nutshell.
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Figure 1: True models for example 1.

NUMERICAL EXPERIMENTS

Example 1: A motivational example

We can naively use just the gradient in the L-BFGS method.
The result is shown in figure 2 where the true models are shown
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Figure 2: Inverted compressibility and buoyancy for exam-
ple 1. The velocity computed from the inverted parameters is
also shown. The optimization algorithm was a naive L-BFGS
implementation.

Algorithm 1 Waveform inversion with a sparse Hessian ap-
proximation.

while Not converged do

1. ū = argminu

∥∥∥∥(λA(b,κ)
P

)
u−
(

λq
d

)∥∥∥∥
2

// Solve

2. Gκ ,Gb,∇bφ̄λ ,∇κ φ̄λ // Form
3. pgn = H̃−1g // Solve
4. find steplength α // Linesearch
5. m = m+αpgn // update model

end

in figure 1. The initial guess was a smoothed version of the true
models. The results show that the buoyancy is not updated very
much. Nearly all of the updates is in the compressibility model.
The velocity derived from the compressibility and buoyancy is
actually reasonable.

Example 2: Heuristics about the effect of the sparse Hes-
sian approximation

To analyse the effect of our proposed Hessian approximation,
we construct a model with a point scatterer. It consists of both
a compressibility and buoyancy perturbation. The background
model is homogeneous. We look at the gradient of the objective
w.r.t both the buoyancy and compressibility and compare it to
the corresponding Gauss-Newton directions to visually illus-
trate the effect of the Hessian approximation. The sources and
receivers are located at the top of the domain. We see that the
Gauss-Newton direction improves the focussing of the buoy-
ancy direction, but it does not do much for the compressibility.

Example 3: Application to waveform inversion

In this waveform inversion example we try to invert just pres-
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Figure 3: True and initial medium. The gradients and Gauss-
Newton directions are shown as well. It can be seen that the
Gauss-Newton direction w.r.t. the buoyancy is more focussed
than the corresponding gradient direction. The two directions
do not show much difference for the compressibility.

sure wavefield data recorded near the surface of the model.
There are 77 sources and receivers and the data contains fre-
quencies from 2 to 17 Hertz. We use a frequency continuation
approach to invert the data. We invert one batch of just 2 fre-
quencies at a time and use the result as an initial guess for the
next batch. The batches are {2,3},{3,4}, ...,{16,17} Hertz.
Algorithm 1 was used to solve this inverse problem. The re-
sults are shown in figure 4. The reconstructed buoyancy and
compressibility show the main structures of the true models
(figure 1). The derived velocity model is also quite decent.
This synthetic example indicates that our approximate reduced
Hessian allows simultaneous inversion of multiple-parameters
without the introduction of explicit scalings of gradients or
quasi-Newton Hessians. In a way, these type of scalings are
implicit in the true Hessian which naturally provides this infor-
mation based on the actual problem.

COMPARISON TO ADJOINT-STATE METHOD

The adjoint-state method is based on the Lagrangian formula-
tion to solve eq.2. One proceeds by solving for the field vari-
able and using the result to solve for the Lagrangian multiplier
(adjoint-wavefield). This can be used to compute the gradient
of the resulting reduced Lagrangian objective w.r.t the medium
parameters. This effectively eliminated the PDE-constraint and
reduced the constrained problem to an unconstrained one. The
resulting reduced Hessian (see for example Haber et al., 2000)
contains only one sparse part which is not Hermitian positive
definite for all parameters. This makes a similar approach to
the one proposed in this abstract impossible. To use Hessian
information in this case, the dense Hessian needs to be stored or
matrix-vector products have to be computed though, accurate
and expensive, extra PDE-solves.
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Figure 4: Inverted compressibility and buoyancy for example
3. The velocity computed from the inverted parameters is also
shown. Inversion by algorithm 1. Both compressibility and
buoyancy results show the main structures of the true model.
The derived velocity is also decent.

CONCLUSIONS AND DISCUSSION

We derived a sparse approximation to the reduced Hessian based
on a penalty formulation of the waveform inversion problem.
This approximate Hessian enables multi-parameter waveform
inversion without the need for incorporating a priori information
about the coupling between the parameters by regularization,
scaling of gradients or quasi-Newton Hessians or inverting for
different parameters sequentially. The derived approximation to
the reduced Hessian is Hermitian positive definite by construc-
tion and easy to invert when computing the update direction.
Further research will focus on including more sparse parts into
the approximation as well as the analysis of the practically
achievable rate of convergence.
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