Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2014 SLIM group @ The University of British Columbia.

Randomized sampling "without repetition" in timelapse seismic surveys

Felix Oghenekohwo

Randomized sampling "without repetition" in timelapse seismic surveys

Felix Oghenekohwo

Team : Rajiv Kumar, Haneet Wason, Ernie Esser, Felix Herrmann

SLIM University of British Columbia

Mosher, C. C., Keskula, E., Kaplan, S. T., Keys, R. G., Li, C., Ata, E. Z., ... & Sood, S. (2012, November). Compressive Seismic Imaging. In *2012 SEG Annual Meeting*. Society of Exploration Geophysicists.

- examples from industry (ConocoPhilips)

Deliberate & natural randomness in acquisition

(thanks to Chuck Mosher)

$b = RBS^*TSu$

Haneet Wason and Felix J. Herrmann, "Time-jittered ocean bottom seismic acquisition" in SEG Technical Program Expanded Abstracts, 2013, p. 1-6

Hassan Mansour, Haneet Wason, Tim T.Y. Lin, and Felix J. Herrmann, "Randomized marine acquisition with compressive sampling matrices", Geophysical Prospecting, vol. 60, p. 648-662, 2012.

Time-lapse seismic

- *Current* acquisition *paradigm*:

 - compute differences between baseline & monitor survey(s)
 - hampered by practical challenges to ensure repetition

repeat expensive dense acquisitions & "independent" processing

Haneet Wason and Felix J. Herrmann, "Time-jittered ocean bottom seismic acquisition" in SEG Technical Program Expanded Abstracts, 2013, p. 1-6

Hassan Mansour, Haneet Wason, Tim T.Y. Lin, and Felix J. Herrmann, "Randomized marine acquisition with compressive sampling matrices", Geophysical Prospecting, vol. 60, p. 648-662, 2012.

Time-lapse seismic

- *Current* acquisition *paradigm*:

 - compute differences between baseline & monitor survey(s)
 - hampered by practical challenges to ensure repetition
- *New* compressive sampling paradigm:
 - cheap subsampled acquisition, e.g. via time-jittered marine *under*sampling
 - may offer *possibility* to *relax* insistence on *repeatability*
 - exploits insights from distributed compressive sensing

repeat expensive dense acquisitions & "independent" processing

Sparsity-promoting recovery

$\tilde{\mathbf{x}} = \arg\min_{\mathbf{x}} \|\mathbf{x}\|_1$ subject to $\mathbf{A}\mathbf{x} = \mathbf{b}$

observed subsampled measurements

Framework in 4-D

- should $\mathbf{A}_1 = \mathbf{A}_2$? what if $\mathbf{A}_1 \approx \mathbf{A}_2$?
- what if $\mathbf{A}_1 \neq \mathbf{A}_2$?

Question : To repeat survey design or not

Idealized synthetic time-lapse data

Structure - curvelet representation

Time-lapse data has structure - significant correlations

4-D signal has structure - increased sparsity

Can we exploit the structure in the vintages and the difference simultaneously ?

Dror Baron , Marco F. Duarte , Shriram Sarvotham , Michael B. Wakin , Richard G. Baraniuk. An Information-Theoretic Approach to Distributed Compressed Sensing (2005)

Distributed compressive sensing - joint recovery model (JRM)

common component

Dror Baron, Marco F. Duarte, Shriram Sarvotham, Michael B. Wakin, Richard G. Baraniuk. An Information-Theoretic Approach to Distributed Compressed Sensing (2005)

Distributed compressive sensing - joint recovery model (JRM)

common component

- Key idea:
 - use the fact that *different* vintages share common information
 - components with *sparse* recovery

• invert for *common* components & *differences* w.r.t. the *common*

Sparsity-promoting recovery

Joint recovery model (JRM)

- $\tilde{\mathbf{z}} = \arg\min \|\mathbf{z}\|_1$ subject to $\mathbf{A}\mathbf{z} = \mathbf{b}$
- Independent reconstruction
 - \mathbf{X}_{i}

 $\tilde{\mathbf{x}}_i = \arg\min \|\mathbf{x}_i\|_1$ subject to $\mathbf{A}_i \mathbf{x}_i = \mathbf{b}_i$, for i = 1, 2

Interpretation of the model -w/&w/orepetition

- In an *ideal* world $(\mathbf{A}_1 = \mathbf{A}_2)$

 - expect good recovery when difference is sparse
 - but relies on "exact" repeatability...

• JRM simplifies to recovering the difference from $(\mathbf{b}_2 - \mathbf{b}_1) = \mathbf{A}_1(\mathbf{x}_2 - \mathbf{x}_1)$

Interpretation of the model -w/&w/orepetition

- In an *ideal* world $(\mathbf{A}_1 = \mathbf{A}_2)$

 - expect good recovery when difference is sparse
 - but relies on "exact" repeatability...
- In the *real* world $(\mathbf{A}_1 \neq \mathbf{A}_2)$
 - no absolute *control* on *surveys*
 - calibration errors
 - hoise...

• JRM simplifies to recovering the difference from $(\mathbf{b}_2 - \mathbf{b}_1) = \mathbf{A}_1(\mathbf{x}_2 - \mathbf{x}_1)$

Stylized Examples

Sparse baseline, monitor and time-lapse signals

Signal length N = 50

Stylized experiments

- Conduct *many* CS experiments to compare • *joint* vs *parallel* recovery of signals and the difference • recovery with *completely* independent A_1 , A_2 random acquisition with different numbers of samples

Stylized experiments

- Conduct *many* CS experiments to compare • *joint* vs *parallel* recovery of signals and the difference • recovery with *completely* independent A_1 , A_2 random acquisition with different numbers of samples

Stylized experiments

- Conduct *many* CS experiments to compare • *joint* vs *parallel* recovery of signals and the difference • recovery with *completely* independent A_1 , A_2 random acquisition with different numbers of samples

$$\mathbf{b}_1 = \mathbf{A}_1 \mathbf{x}_1$$

- **Compute Probability of recovery**
- Run 2000 different experiments

Results: independent versus joint recovery

Recovery of vintages

Joint recovery is better than independent

Improved recovery of the vintages and the difference

Requires fewer samples

With exact repetition

Ν

$$\mathbf{b}_1 = \mathbf{A}_1 \mathbf{x}_1$$

REPEAT EXPERIMENT AS BEFORE

$$\mathbf{A}_1 = \mathbf{A}_2$$

Ν $\mathbf{b}_2 = \mathbf{A}_2 \mathbf{x}_2$

Results: independent versus joint recovery

Recovery of vintages

WITH Repetition

Recovery of vintages

WITHOUT Repetition

Recovery of vintages

- Recovery of vintages themselves improves without repetition
- Recovery of *difference improves* with *repetition* because
 - difference is sparse compared to sparsity of vintages
 - does not recover the vintages themselves

- Recovery of *vintages* themselves *improves* without *repetition*
- Recovery of *difference improves* with *repetition* because
 - difference is sparse compared to sparsity of vintages
 - does not recover the vintages themselves
- Do the acquisitions really have to overlap?

- Recovery of *vintages* themselves *improves* without *repetition*
- Recovery of *difference improves* with *repetition* because
 - *difference* is *sparse* compared to *sparsity* of *vintages*
 - does not recover the vintages themselves
- Do the acquisitions really have to overlap?

Results: recovery and overlap dependency

Recovery of vintages

Interpretation from the stylized example

- Joint recovery model (JRM) is always superior to the independent or parallel method
- As the degree of overlap between the sampling increases, the recovery of the signals gets worse.
- Time-lapse signal recovery benefits from some overlap

Seismic example

Time-jittered source in marine

Method

- Velocity and density model provided by BG, taken as baseline
- High permeability zone identified at a depth of ~ 1300m
- Fluid substitution (gas/oil replaced with brine) simulated to derive monitor velocity model
- Wavefield simulation to generate synthetic time-lapse data

Simulated original data – time-domain finite differences

time samples: **512** receivers: **100** sources: **100**

sampling time: **4.0 ms** receiver: **12.5 m** source: **12.5 m**

Conventional vs. time-jittered sources – undersampling ratio = 2, 2 source arrays

shorter acquisition time geometry is not the same

Measurements - undersampled and blended

baseline

monitor

Stacked sections

Original baseline

Original 4-D signal

Stacked sections

Original 4-D signal

Original 4-D signal

Stacked sections - 50% overlap in acquisition matrices

Parallel (9.7 dB)

NRMS Plot

Seismic example

An extension to model space

Example : Stacking

M midpoint-offset

- **N** normal move-out
- **S** stacking
- C sparsifying operator
- H adjoint

Idealized synthetic time-lapse data

Method

Acquisition

randomly missing shots

Processing

- Joint processing (JRM)

Subsampled baseline and monitor data, with independent and

Independent processing of the observed data (Parallel)

Method

Acquisition

randomly missing shots

• Processing

- Joint processing (JRM)

Compare *Parallel* versus *Joint* Repeat for a "*partial*" dependence in geometry

Independent processing of the observed data (Parallel)

Baseline recovery - 0% overlap in acquisition matrices

Parallel (9.62 dB)

Joint (10.08 dB)

Monitor recovery - 0% overlap in acquisition matrices

Parallel (10.08 dB)

Joint (10.02 dB)

4-D recovery - 0% overlap in acquisition matrices

Baseline recovery - 50% overlap in acquisition matrices

Parallel (9.62 dB)

Joint (9.79 dB)

Monitor recovery - 50% overlap in acquisition matrices

Parallel (9.69 dB)

Joint (9.80 dB)

4-D recovery - 50% overlap in acquisition matrices

Conclusions

Randomized sampling techniques can be extended to time-lapse seismic surveys and processing.

Process time-lapse data jointly, not independently, in order to exploit the *shared* information.

We can work with *subsampled* data, and recover densely sampled vintages **and** time-lapse differences.

Provided we understand the *physics* of our model, we can safely work with *subsampled* data from randomized sampling ideas.

TAKE HOME

Think randomized sampling in seismic surveys!! It saves cost!!!

Acknowledgements

Thank you for your attention!

This work was in part financially supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant (22R81254) and the Collaborative Research and Development Grant DNOISE II (375142-08). This research was carried out as part of the SINBAD II project with support from the following organizations: BG Group, BGP, BP, CGG, Chevron, ConocoPhillips, ION, Petrobras, PGS, Statoil, Total SA, Sub Salt Solutions, WesternGeco, and Woodside.

