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SUMMARY

Vouching for higher levels of repeatability in acquisition and
processing of time-lapse (4D) seismic data has become the
standard with oil and gas contractor companies, with signifi-
cant investment in the design of acquisition systems and pro-
cessing algorithms that attempt to address some of the current
4D challenges, in particular, imaging weak 4D signals. Re-
cent developments from the field of compressive sensing have
shown the benefits of variants of randomized sampling in ma-
rine seismic acquisition and its impact for the future of seis-
mic exploration. Following these developments, we show that
the requirement for accurate survey repetition in time-lapse
seismic data acquisition can be waived provided we solve a
sparsity-promoting convex optimization program that makes
use of the shared component between the baseline and moni-
tor data. By setting up a framework for inversion of the stacked
sections of a time-lapse data, given the pre-stack data vol-
umes, we are able to extract 4D signals with relatively high-
fidelity from significant subsamplings. Our formulation is ap-
plied to time-lapse data that has been acquired with different
source/receiver geometries, paving the way for an efficient ap-
proach to dealing with time-lapse data acquired with initially
poor repeatability levels, provided the survey geometry details
are known afterwards.

INTRODUCTION

Repeatability in acquisition and processing ranks highest among
the technical challenges faced with time-lapse seismic stud-
ies (Lumley and Behrens, 1998) and researchers continue to
develop methods that will address these challenges. Com-
puting weak 4-D signals pose another significant challenge
the industry currently faces as the signal is below the non-
repeatable noise introduced during acquistion or processing.
Therefore, many studies have been focused on improving re-
peatability levels of acquired and processed time-lapse data
(Porter-Hirsche and Hirsche, 1998; Landrø, 1999; Eiken et al.,
2003). Recently, permanent monitoring systems have been
used to acquire multiple time-lapse data and automated sys-
tems are being designed to improve the accuracy and repeata-
bility of time-lapse surveys (Brown and Paulsen, 2011; Eggen-
berger et al., 2014). Although these systems improve the re-
peatability levels of the time-lapse data, they are very expen-
sive to maintain and enormous effort is required for their op-
eration. In our recent study (Oghenekohwo et al., 2014), we
show how the concern for repeatability can be relaxed pro-
vided we randomly sample the shots during the time-lapse sur-
veys. Consequently, we solve an inverse problem, exploiting
the shared information in the baseline and monitor data, to re-
cover a densely sampled time-lapse data from the measured
randomized data. The net result was a high-fidelity 4D signal
in the data domain.

Few studies involving a joint processing or inversion scheme
for imaging time-lapse data have been conducted. Rickett and
Lumley (2001) proposed a cross-equalization data processing
flow where data repeatability is matched at each processing
step, while Ayeni et al. (2009) imaged time-lapse data acquired
from simultaneous source (or blended acquisition) which is a
variant of randomized marine acquisition. However, while the
cross-equalization approach does not address data which has
been randomly sampled without repetition, and the inversion
scheme does not account for the shared information in the data
sets, we exploit both requirements in our formulation to im-
prove the 4D signal recovery quality.

In this paper, we extend our independent and joint recovery
methods to the computation of time-lapse images using our
randomized sampling scheme without repetition, having ob-
served its’ efficacy to recover reliable 4D signals in the data
domain. For simplicity, we show the computation of time-
lapse stacked sections including 4D difference stacked sec-
tions, from randomized, subsampled baseline and monitor data.

METHODOLOGY

Given an earth model m, the conventional approach to model-
ing seismic data y from a modeling operator F is:

Fm = y. (1)

Ideally, F is either an elastic or acoustic wave-equation oper-
ator, however, for simplicity (but without generality), we re-
define F = MHNHSH as a linear operator mapping a stacked
time section to a pre-stack seismic data volume. Here, M is the
midpoint-offset to source-receiver operator, and S is the stack-
ing operator. This linear mapping relies on the prior knowl-
edge of the stacking velocities. This is required for construct-
ing the normal move-out (NMO) operator N. This velocity re-
quirement is true with any imaging or stacking algorithm. In-
correct background velocity model or stacking velocities can
lead to significant misalignments of reflectors in a migrated
image or stacked section respectively, therefore it is important
to have an accurate estimate of the velocity. The earth model
can also be represented as m = CHx, where x is the sparse
representation of m, and CH is the synthesis curvelet operator
linking the model to the curvelet coefficients. Taking m to be
the stacked time section, and combining the curvelet represen-
tation of the model with the redefined modeling operator F,
equation (1) can be recast as :

Ax = FCHx = y. (2)

Clearly, this formulation gives rise to an over-determined sys-
tem of equations, where the observed data y has a higher di-
mension compared to the model m. An inversion approach is
typically required to find an estimate m̃ of the true model m,
given the observed data. Inversion for the stacked section of
a seismic data is a viable approach as it affords us to sample
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as little as possible since the number of unknowns in our lin-
ear system of equations is small. Furthermore, we note that
the estimation of the stacked sections from the observed data
is significantly less computationally expensive than recovering
the complete wavefield. The inversion can be done in several
ways and in consistency with our previous work, we will adopt
the `1 inversion procedure where we promote sparsity in x by
solving the convex optimization problem:

x̃ = argmin
x

‖x‖1 subject to y = Ax.

For time-lapse studies, where we have at least a baseline pre-
stack data y1 and a monitor pre-stack data y2, we can do two
things : (1) inversion of the data sets to obtain an estimate of
the stacked section for the baseline m̃1 = CHx̃1 , the monitor
m̃2 = CHx̃2 , and finally differencing the two stacked sections.
(2) inversion of the difference between the pre-stack baseline
and monitor data (provided the data are matched to a common
computational grid), to obtain the time-lapse stacked section.
The problem formulation allows us to employ our independent
recovery strategy (IRS) and joint recovery method (JRM), dis-
cussed in (Oghenekohwo et al., 2014), to estimate the indi-
vidual stacked sections and the corresponding 4D stacked sec-
tions. The IRS simply inverts for the baseline and monitor
stacked sections independently, by solving the following prob-
lems

x̃1 = argmin
x2

‖x1‖1 subject to y1 = A1x1

x̃2 = argmin
x2

‖x2‖1 subject to y2 = A2x2

On the other hand, the JRM performs a joint inversion by tak-
ing into account the shared information (Baron et al., 2005) be-
tween the time-lapse data. We let x1 = z0+z1 and x2 = z0+z2
where z0 represents the common part of the baseline and mon-
itor models, whereas z1 and z2 are the parts contributing to the
differences in the models. Therefore, we solve the following
problem:

z̃ = argmin
z

‖z‖1 subject to y = Az.

where A =
[

A1 A1 0
A2 0 A2

]
, z=

z0
z1
z2

, and y=
[

y1
y2

]
. From z̃,

we can compute an estimate of the individual stacked sections
and the differences between the stacks.

NUMERICAL EXPERIMENTS

We model a fixed-spread acquisition configuration by simu-
lating densely sampled synthetic time-lapse data comprising
a baseline data set and a monitor data set y2 using F while
keeping the acquisition geometries same . An example of the
synthetic seismic data is shown in Figure 1.

In an effort to justify the need to relax time-lapse seismic data
acquisition repeatability, we randomly subsample the idealized
pre-stack synthetic baseline data by reducing the shot interval,
simulating a baseline acquisition with several shots missing
at random locations. Similarly, a different randomized sub-
sampling of the monitor data was performed to represent ran-
domized monitor survey with a different set of shot locations
missing, independent of the baseline survey.

Figure 2 shows an example of the observed common midpoint
(CMP) gather indicating missing shots in the data. Although
we have only simulated data with missing shots between the
vintages, this can equally be extended to missing receivers or
missing shots and receivers. This experiment produces time-
lapse data from different acquisition geometries, resulting in
different sets of shot data and missing traces. In addition, we
can also extend this experiment to simultaneous marine acqui-
sition where seismic sources fire at randomly dithered times
(Wason and Herrmann, 2013).
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Figure 1: Densely sampled time-lapse data with repetition.
(left) baseline data, (right) monitor data. The ellipse indicates
the time-lapse change zone.
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Figure 2: Observed randomly sampled time-lapse data with-
out repetition. (left) baseline data, (right) monitor data. Note
the missing shots in the data due to the randomized sampling
without repetition.
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Conventional processing involving NMO and stacking was ap-
plied to the densely sampled idealized data sets and this pro-
duced a baseline stacked section and monitor stacked section
respectively. Figure 3 shows the true (idealized) stacked sec-
tions. These served as a benchmark for the rest of our ex-
periment. The stacked section shows the complexity of the
model with an indication of strong impedance contrast at dif-
ferent time depths. The time-lapse signal is at a time-depth
of between 1.2s and 1.4s and varies laterally over a range of
approximately 1km.

To establish the effects of randomized time-lapse survey with-
out repetition and with different subsampling ratios, as it re-
lates to inversion for the stacked sections, we performed ex-
periments for different subsampling ratios. We investigated the
inversion results using IRS and JRM, when we have severely
subsampled data (1% data) and when the data is less subsam-
pled (5% data). The signal-to-noise ratio (SNR) of our results
were also computed, since we know the true time-lapse sig-
nal. The inflation of these figures is permissible since we are
in an idealized setting and they do illustrate the potential uplift
of what happens when the wave propagation effects are com-
pletely accounted for or when the physics is right.

The top row of Figure 4 shows the estimated difference time-
lapse stacked sections when the acquired data is just 1% of the
idealized densely sampled pre-stack data. In comparison with
the ideal stacked sections, we notice a poor match using the
IRS (SNR = 0.27dB) and good recovery using the JRM (SNR
= 6.28dB). The artifacts observed in the difference stacked
sections using the IRS poses a significant problem for inter-
preters especially when the time-lapse signal is very weak.
Such a weak signal will be lost in field data having consid-
erable amount of non-repeatable noise. We have modeled a
strong time-lapse signal, so we can still delineate signals from
artifacts. We also note that the joint recovery approach bene-
fits more in recovering the 4D difference than the independent
recovery strategy. Although not shown here for brevity, we
observed that an attempt to recover the full wavefield using
the observed data fails considerably regardless of the method
employed. However, we expect an improved performance as
subsampling ratio decreases.

The next experiment is an inversion for the time-lapse stacked
sections using randomly selected 5% of the shots from the
densely sampled data, again without repetition. In line with
our observation from using 1% of the data, we noticed a sig-
nificant increase (5.03dB for IRS and 8.36dB for JRM) in the
SNR levels of the estimated stacked sections. Consequently,
the artifacts level in the difference section is reduced and the
resolution of the recovered time-lapse signal is increased as
shown in the bottom row of Figure 4. In both subsampling
cases, the joint recovery method performs significantly better
than the independent recovery method because it exploits the
shared information between the observed time-lapse data.

DISCUSSION AND CONCLUSIONS

The synthetic study is idealistic in that it uses the same for-
ward modeling operator in the inversion scheme. This is nec-
essary for the inversion to be stable, as we require our data to

be in the range of the modeling operator. In other words, it is
very crucial to account for the physics of the wave propaga-
tion in the forward modeling operator. We have also worked
with noiseless synthetic data, although we do not expect a poor
performace of our methods in such case. Despite our study
being idealistic, it is proof of concept of a potential formula-
tion for analysis of 4D signals in the image domain where we
have randomized and subsampled measurements from a base-
line survey and monitor survey. We have investigated the per-
formance of the recovery algorithms as a function of subsam-
pling ratio and have studied the results for few subsampling
ratios . We applied the independent recovery approach and the
joint recovery method, and recovered the stacked sections as
well as the 4D stacked sections. We observed that extension of
our algorithm to recovery of time-lapse stacked section is not
as computationally expensive as its application to the recovery
of the densely sampled wavefields. In addition, this formula-
tion is not limited to analysis of just two vintages of time-lapse
data. It can be applied to multiple time-lapse data which have
been acquired with different source/receivers missing.

In conclusion, we have presented an extension of our random-
ized sampling strategy for time-lapse data acquisition, to es-
timation of stacked sections. We show that imaging of time-
lapse data and stacking are two related phenomena and both
follow the same inversion procedure. We present 2D inver-
sion results for a synthetic model illustrating the feasibility of
randomized sampling for time-lapse studies, and the results
demonstrate the usefulness of the joint recovery method for ex-
tracting 4D signals from significantly subsampled time-lapse
data. We claim that time-lapse data acquired without repeti-
tion, can be processed to obtain stacked sections which reveal
high-fidelity 4D difference provided we carry out a sparsity-
promoting inversion program. In addition, we distinguish be-
tween two recovery algorithms that can both handle the mea-
sured data while delineating between the efficiency of the meth-
ods when the data are severely and less subsampled. The next
step in our study is to extend this methodology to realistic wave
equation based inversion of seismic data from time-lapse sur-
veys without repetition, and produce migrated images in depth.
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Figure 3: Stacked sections of the densely sampled time-lapse data with repetition. (left) baseline, (center) monitor, (right) 4D
difference between baseline and monitor.
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Figure 4: 4D difference stacked sections from randomly sampled time-lapse data without repetition (top row) using 1% of fully
sampled data , (bottom row) 5% of fully sampled data. (a,c) using independent recovery approach, (b,d) using joint recovery method.
Note the poor recovery quality using the independent recovery approach which does not account for the shared information between
the two datasets.
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