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SUMMARY

In this work we propose to use the spectral projector (Ken-
ney and Laub, 1995) and randomized HSS technique (Chan-
drasekaran et al., 2006) to achieve a stable and affordable two-
way wave equation depth stepping migration algorithm.

INTRODUCTION

Migration methods based on solution of the full wave equa-
tion have become the state of the art in modern exploration
seismology. They provide the benefits of more accurate imag-
ing in complex geological scenarios with steep dips and over-
hangs, multipathing and complex overburden. However, imag-
ing methods based on modeling with the full wave equation
can be quite expensive for large scale problems, especially in
three dimensions. Therefore methods based on depth stepping
remain of interest. In such methods, one extrapolates the wave-
fields in depth rather than extrapolating in time or solving the
implicit monochromatic Helmholtz equation. Depth extrapola-
tion is notoriously unstable due to the existence of the evanes-
cent wave components (Wapenaar and Grimbergen, 1998). To
handle this instability, several method have been proposed.
One of the most promising methods that we are aware of is the
method of Sandberg and Beylkin (2009), where they claimed
that the spectral projector can filter out the evanescent waves
without losing of any propagating wave components. In this
work we revisit this method and propose to further improve
its computational performance with a recently developed tech-
nique – the randomized HSS technique. For simplicity, the
methodology and results are presented in two dimensions, but
they generalize to three dimensions in a straightforward man-
ner.

Assuming that we are given a survey recorded at a surface z0,
the wave propagation can be described by the acoustic wave
equation (Sandberg and Beylkin, 2009):

ptt = v(z,x)2(pxx + pzz),

p(x,0, t) = 0, t ≥ 0,{
p(x,z,0) = f (x),
pt(x,z,0) = g(x),

(1)

where v(x,z) is the velocity, p(z,x, t) is the acoustic pressure
at point (x,z), f (x) is the initial pressure at time 0, and the
subscripts indicate partial derivatives. Applying the Fourier
transform with respect to time to Equation (1) and rearranging,
we obtain the following equation for p̂:

p̂zz =

[
−
(

ω

v(x,z)

)2
−Dxx

]
p̂ := Lp̂. (2)

Here L is the operator in the square brackets. We consider
Equation (2) with the initial conditions q and qz at the surface

z = z0: {
p̂(x,z0,ω) = q̂(x,z0,ω)

p̂z(x,z0,ω) = q̂z(x,z0,ω)
(3)

where in practice, q̂ and q̂z stand for the wavefield specified
at the surface z = z0 and its first derivative along z direction
respectively.

A first order depth stepping scheme can be formulated based
on the initial-value problem formed by Equations (2) and (3)
(Sandberg and Beylkin, 2009):

d
dz

[
p̂
p̂z

]
=

[
0 1
L 0

][
p̂
p̂z

]
. (4)

However, this depth stepping scheme is unstable. The cause
of this instability is the indefinite nature of the self-adjoint op-
erator L, such that the positive eigenvalues will result in ex-
ponential growth of the wavefield during depth extrapolation.
Physically, the negative eigenvalues correspond to propagat-
ing wave modes, and the positive eigenvalues are associated
with the evanescent wave modes. The evanescent wave modes
can be suppressed by zeroing out the positive eigenvalues via
the eigenvalue decomposition of the operator L, however, the
eigenvalue decomposition is too expensive to be practical in
large scale seismic imaging problems. Alternatively, the spec-
tral projector provides an eigenvalue decomposition free ap-
proach to stabilize the extrapolation operator.

STABLE DEPTH EXTRAPOLATION WITH SPECTRAL
PROJECTOR

The mathematical background of the spectral projector can be
found in the survey of Kenney and Laub (1995), where a pro-
jector P projecting onto the non-positive invariant subspace
of a self-adjoint matrix L is defined as:

P = (I− sign(L))/2. (5)

Here I stands for the identity matrix, and sign(L) stands for
the matrix sign function of the matrix L. In other words, with
the spectral projector P applied to the unstable extrapolator
L, one obtains a stabilized extrapolation operator PLP that
suppresses the evanescent wavefield modes associated with the
positive eigenvalues of L during the extrapolation. Compared
to other approximate Fourier filtering techniques (e.g. Kosloff
and Baysal, 1983), the spectral projector only removes the true
evanescent waves (associated with the positive eigenvalues)
without relying on the assumption that the medium is locally
laterally invariant.

The computation of the spectral projector P relies on the com-
putation of the matrix sign function: sign(L). Recall that the
matrix sign function of the self adjoint matrix L can be written
as:

sign(L) =V sign(Λ)V ∗, (6)
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Figure 1: The eigenvalues of the PLP operator computed
with Algorithm 1 and Equation (5) after iterations 1, 3, 5, 7, 9
and 11. The horizontal axis is the eigenvalue index, where the
eigenvalues are sorted in increasing order.

where V contains the eigenvectors of L, and Λ is the diagonal
matrix of the eigenvalues of L.

Auslander and Tsao (1991) introduced the Newton - Schulz
method to compute the matrix sign function without eigen-
value decomposition. The Newton-Schulz iteration (Algorithm
1) converges to the matrix sign function using a matrix poly-
nomial recursion with a quadratic convergence rate. Figure
1 illustrates the eigenvalues of the operator PLP computed
with Algorithm 1 and Equation (5). It is clear from Figure 1
that the positive eigenvalues converge to zeros in just a few
iterations, while the non-positive eigenvalues remain intact.

Algorithm 1 Newton-Schulz Iteration for the Matrix Sign
Function (Auslander and Tsao, 1991)
Input: Self adjoint matrix L
Output: S := sign(L)

1. Initialize S0 = L/||L||2, where ||L||2 stands for the 2
norm of matrix L

2. For k = 1......N, Sk+1 =
3
2 Sk− 1

2 S3
k

EFFICIENT COMPUTATION OF THE SPECTRAL PRO-
JECTOR WITH RANDOMIZED HSS TECHNIQUE

Even though the Newton-Schulz iteration (Algorithm 1) can
compute the matrix sign function in an affordable number of
polynomial iterations, we need to address the computationally

intensive part in it: the matrix-matrix multiplication. Even if
we start with a sparse matrix, the matrices involved in the re-
cursion fill up quickly in early iterations. The O(n3) compu-
tational complexity for dense matrix-matrix multiplication is
not practical for any realistic seismic problem, especially in
3D, where the matrix size can be of order 106 by 106 or larger.
Therefore we need a powerful engine for fast matrix-matrix
multiplication in order to compute the spectral projector effi-
ciently. For this purpose, in this section we propose an effi-
cient acceleration with the randomized Hierarchically Semi-
Separable (HSS) method.

HSS matrix representation was introduced as an alternative
way of representing a particular class of in general dense n×
n matrices. The literature on HSS representation is numer-
ous, for more information the reader is referred to e.g. Chan-
drasekaran et al. (2006), Sheng et al. (2007), Xia (2012), and
references therein. Instead of using the n2 entires of a ma-
trix, the HSS representation exploits the low rank structure of
its particular sub-matrices. The HSS matrix representation has
a nice property of linear complexity of matrix computations
and storage with respect to the matrix size. With regards to
the matrix-matrix multiplication, the cubic complexity O(n3)
for ordinary dense matrices is reduced to linear (O(nk3)) com-
plexity via HSS matrix representation, where n is the matrix
size, and k is the maximum rank of the transition matrices in
the HSS tree (Lyons, 2005).

Further improvement in efficiency of the HSS algorithms can
be achieved by making use of the recently developed random-
ized singular value decomposition (rSVD) algorithm. In many
HSS algorithms, especially during the process of construct-
ing HSS representations, SVDs (or other rank revealing al-
gorithms) are recursively used in compressing the low rank
off-diagonal components. The rSVD algorithm (Tygert and
Rokhlin, 2007) is one of those algorithms (Halko et al., 2011)
that compute fast matrix factorizations by exploiting the ran-
dom probing technique. In rSVD, random probing is used to
identify the compressed subspace that captures most of the ac-
tion of a matrix, and then further matrix manipulations are ap-
plied to compute the approximate SVD result. In this work,
we implement the rSVD algorithm proposed by Tygert and
Rokhlin (2007), and incorporate the rSVD algorithm into the
standard HSS algorithms, generating more efficient random-
ized HSS algorithms. Tygert and Rokhlin (2007) claim the
rSVD algorithm to have numerical complexity of O(k2(m+n))
with a small constant number for a rank k m×n matrix, where
k ≤ n≤ m.

Below, we show the time improvement achieved with the ran-
domized HSS method in comparison with the standard HSS
method in HSS tree structure construction (using MATLAB
built-in SVD’s). Figure 2 shows computational performance of
the randomized SVD algorithm and the randomized HSS con-
struction with the error controlled to the level of 1e-6. The first
plot shows an SVD and rSVD comparison on a series of depth
extrapolation matrices L of different sizes. The second plot
shows a comparison of HSS construction using standard SVD
and rSVD. Some general conclusions can be drawn from those
two plots: first, the rSVD algorithm significantly decreases
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Figure 2: Computational performance of the randomized SVD
algorithm and the randomized HSS construction for L matrices
of different sizes.

the computational time compared to the standard SVD algo-
rithm; second, randomized HSS construction time is also sig-
nificantly reduced compared to the standard SVD algorithm,
and the advantage becomes more distinct as the matrix size
grows. For other HSS operations, the improvement from the
randomized HSS would be determined according to how in-
tensively SVD’s are used by specific algorithms.

In Figure 3 we show the computational cost of the spectral
projector computed with the eigenvalue decomposition (blue
line), the polynomial recursion using ordinary matrix-matrix
multiplication (black line), and the randomized HSS acceler-
ation (red line) for different matrix sizes. As the matrix size
grows, the time advantage of randomized HSS acceleration
starts to be obvious.
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Figure 3: The computational cost of the spectral projector
computed with the eigenvalue decomposition (blue line), the
polynomial recursion using ordinary dense matrix-matrix mul-
tiplication (black line), and the randomized HSS acceleration
(red line). As the matrix size grows, the time advantage with
randomized HSS acceleration becomes more apparent.

Figure 4 shows a migration example with the laterally varying
background velocity model, plot (a), and the model perturba-
tion plot (b). The density is assumed constant. The grid spac-
ing is 10 m in both horizontal and vertical direction. In this
experiment, we model the frequency range of 5 Hz to 35 Hz us-
ing the linearized constant-density acoustic frequency-domain
modeling operator: https://www.slim.eos.ubc.ca/SoftwareDe-
mos/applications/Modeling/2DAcousticFreqModeling/. The
computational domain in which modeling and migration is per-
formed is wider than the part shown in Figure 4 (a-d), since a
horizontal taper was applied to the wavefield at the left and
right boundary to suppress the wrap around of the wavefield
from the periodic boundary conditions during depth extrapola-
tion. Sources and receivers were put on the top layer of grid
points of the wider domain. Figure 4 (c) shows the imaging
result with two-way wave equation depth stepping migration
algorithm of Sandberg and Beylkin (2009) with the proposed
randomized HSS acceleration. Although the result of the depth
stepping migration is essentially clean with no significant arti-
facts, we filtered it using 1st order finite differences in the ver-
tical direction to enhance the perturbation. Figure 4 (d) shows
reverse time migration (RTM) result. The RTM result was fil-
tered using 2nd order finite differences in the vertical direction
to suppress the low frequency artifacts. The images are compa-
rable in quality, except for the area under the salt body and the
thin slanting reflectors close to the boundaries of the domain.

CONCLUSION

In this work we proposed a randomized HSS acceleration for
the full wave equation depth-stepping migration method first
introduced by Sandberg and Beylkin (2009). Specifically, the
rSVD technique is used to speed up the HSS matrix opera-
tions utilized in the computation of the spectral projector of
the depth-stepping operator. Tests with the randomized HSS
acceleration technique demonstrate its efficiency compared to
conventional techniques, and the advantage becomes more ap-
parent as the problem size grows. The tests were performed in
two dimensions, but extension to 3D is straightforward. The
randomized HSS accelerated depth-stepping full wave equa-
tion migration can be an efficient alternative to RTM.
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(c) Depth stepping migration
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Figure 4: Migration example. (a) background velocity model; (b) model perturbation; (c) migration result with the two-way
wave equation depth extrapolation with the randomized HSS acceleration filtered using 1st order finite differences in the vertical
direction; (d) reverse time migration result filtered using 2nd order finite differences in the vertical direction.
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