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SUMMARY

We propose to solve the Estimation of Primaries by Sparse
Inversion problem from a sesimic record with missing near-
offsets and large holes without any explicit data reconstruction,
by instead simulating the missing multiple contributions with
terms involving auto-convolutions of the primary wavefield.
Exclusion of the unknown data as an inversion variable from
the REPSI process is desireable, since it eliminates a significant
source of local minima that arises from attempting to invert for
the unobserved traces using primary and multiple models that
may be far-away from the true solution. In this talk we investi-
gate the necessary modifications to the Robust EPSI algorithm
to account for the resulting non-linear modeling operator, and
demonstrate that just a few auto-convolution terms are enough
to satisfactorily mitigate the effects of data gaps during the
inversion process.

INTRODUCTION
Multiple removal is a crucial aspect of seismic signal process-
ing that constantly face a difficult quad-lemma between ac-
curacy, robustness, low computational complexity, and full-
azimuthal sampling. Current prediction-subtraction methods
such as Surface-Related Multiple Removal (Verschuur, 1992)
face limits in accuracy and robustness when confronted with
undersampled data of limited quality, prompting recent develop-
ments in whole- wavefield inversion/deconvolution techniques
to decrease dependence on practitioner guesswork and QC. In
recent work Lin and Herrmann (2014) proposed a multiscale
strategy that reduces the computational burden by using coarser
spatial sampling grids while exploiting the unique way in which
REPSI (Lin and Herrmann, 2013) mitigates spatial aliasing.
While this approach successfully addressed some of the com-
putational costs associated with “data-driven” techniques typi-
fied by the Raleigh-Helmholtz reciprocity relationship between
the field-measured wavefield data and its multiple-free version
(Fokkema and van den Berg, 1993; Frijlink et al., 2011), these
methods all rely on dense wide-azimuthal samplings that in-
clude near offset information.

This reliance on dense samplings has and continues to be chal-
lenging and has called for intricate on-the-fly trace interpola-
tions as part of SRME predictions or extensions of EPSI to
include missing data as unknowns (van Groenestijn and Ver-
schuur, 2009), forcing the algorithm to alternate between esti-
mating the source, the surface-free Green’s function and this
missing data. While the initial results of the latter technique in
EPSI has been successful, these explicit inversion schemes do
not exploit possibilities to extend the multiple-prediction opera-
tor to include recursive terms that model the imprint on missing
data. Our main contribution in this work is to come up with a
formulation where the effects of missing data–i.e., a mask act-

ing on the data matrix zeroing entries where data is missing, are
incorporated in the forward model of EPSI explicitly through
auto-convolution terms.

Our work is organized as follows. First, we briefly summarize
the EPSI formulation as an alternating optimization problem
inverting for the source and surface-free Green’s by promoting
sparsity via the `1-norm on the latter. We make the depen-
dence of EPSI on the fully sampled upward going wavefield
explicit to emphasize the dependence of the formulation on
dense sampling. Next, we discuss the method proposed by
van Groenestijn and Verschuur (2009), which extends EPSI to
the situation where information on the upgoing wavefield is
missing, followed by our method where we incorporate convo-
lutional terms in the forward modeling operator that account
for missing (e.g., near offsets) traces in the upgoing wavefield.
The different terms in these expansion predict the impact of
missing data on the prediction of first and higher multiples. We
conclude by demonstrating the efficacy of this method on both
synthetic and field data sets.

THEORY

The basic assumption of surface-related multiple removal with
EPSI is that, with noiseless and perfectly sampled up-going
seismic wavefield P at the Earth’s surface (with seismic re-
flectivity operator R, typically close to −I) due to a finite
energy source wavefield Q, there exists an operator G for ev-
ery frequency in the seismic bandwidth such that the relation
P = GQ+RGP holds true. Here we use the “detail-hiding”
notation (Berkhout and Pao, 1982) where all upper-case bold
quantities are monochromatic data-matrices, with the row index
corresponding to the discretized receiver positions and column
index the source positions. Moreover, G is interpreted as the
(surface) multiple-free subsurface Green’s function. The term
GQ is interpreted as the primary wavefield, while the term
RGP contains all surface-related multiples.

Since only P can be measured, inverting the above relation
for GQ admits non-unique solutions without additional reg-
ularization. Based on the argument that a discretized physi-
cal representation of G resemble a wavefield with impulsive
wavefronts, the Robust EPSI algorithm (REPSI, Lin and Her-
rmann, 2013) attempts to find the sparsest possible g in the
physical domain (from here on, all lower-case symbols indi-
cate discretized physical representations of previously defined
quantities). Specifically, it solves the following optimization
problem in the space-time domain:

min
g, q
‖g‖1 subject to f (g,q;p)≤ σ , (1)

f (g,q;p) := ‖p−M(g,q;p)‖2,

where the forward-modeling function M can be written in terms
of the data-matrix notation M(G,Q;P) := GQ+RGP. Prob-



lem (1) essentially asks for the sparsest (via minimizing the
`1-norm) multiple-free impulse response that explains the sur-
face multiples in p, while ignoring some amount of noise as
determined by σ .

To consider the parts of data P that are not sampled, we now
introduce a masking matrix K that is has same dimensions as the
data-matrices. The elements of mask K has value 0 where we do
not have data at the corresponding source-receiver position pair,
and the value 1 at sampled positions. Thus, we can segregate
parts of the data that are sampled as P′ := K ◦P, where the
symbol ◦ denotes the matrix Hadamard product. Similarily, we
introduce the complement mask Kc (a “stencil”), such that the
unknown parts of the data can be written as P′′ := Kc ◦P with
P′+P′′ = P. The presence of these gaps are a significant source
of error in the calculation of M (see, for example, Verschuur,
2006).

Explicit data inversion

As first proposed by van Groenestijn and Verschuur (2009),
we can augment the optimization problem (1) to explicitly
reconstruct p′′ from intermediate estimates of g such that the
accuracy of M can be improved as the algorithm converges. We
now overload the definition of M with a more general modeling
operator

M(G,Q,P′′;P′) := GQ+RG(P′+P′′), (2)

which defines a more complicated inversion problem that has
p′′ as an inversion variable

min
g, q, p′′

‖g‖1 subject to f (g,q,p′′;p′)≤ σ , (3)

f (g,q,p′′;p′) := ‖p′+p′′−M(g,q,p′′;p′)‖2.

A major pitfall in solving (3) via an alternating optimization
strategy (or cyclic coordinate descent) is that g and p′′ are in
fact tightly coupled, because we can write the cyclic relation

P′′ = Kc ◦P = Kc ◦
[
GQ+RGP′+RGP′′

]
(4)

where it is evident that P′′ can be almost completely charac-
terized by G. We therefore would expect that ∂p′′/∂g and
∂g/∂p′′ cannot be ignored when updating p′′ and g. However,
while ∂p′′/∂g is straightforward to compute, the term ∂g/∂p′′
is convoluted and necessarily involves Q−1 (deconvolving the
source function q). Motivated by this observation, we propose
to remove p′′ as an inversion variable all-together, and instead
model its multiple contribution with terms that ultimately in-
volve auto-convolutions of g.

Alternative: inclusion of auto-convolution terms

Substituting expression (4) recursively into (2) results in a new
forward-modeling operator into the range of observed data
locations with infinitely many terms in a series expansion

M̃(G,Q;P′) =K◦
[
GQ+RGP′

+ RGKc ◦ (GQ+RGP′) (5)

+ RGKc ◦
(
RGKc ◦ (GQ+RGP′)

)
(6)

+ O(G4)
]

:=K◦
∞∑

n=0

(RGKc◦)n (GQ+RGP′
)
. (7)

In this expression we slightly abuse the notation and write
matrix Hadamard products as linear operators (valid as
long as the corresponding rules of associativity are obeyed).
Since high-order multiple decay, we know from physical
arguments that ‖G‖ < 1, and therefore (7) converges to
K ◦ (I−RGKc◦)−1 (GQ+RGP′). In a noise-free setting
with perfect data sampling outside of the holes, we expect
M̃(G,Q;P′) to exactly match the observed data P′ = K ◦P.
Thus we have the following relation:

K◦P = K◦ (I−RGKc◦)−1 (GQ+RGP′
)
. (8)

The physical interpretation of expression (8) is clear: if we have
access to the total data P, we can exactly derive the multiple
contribution due to P′′ by RGKc ◦P = RGP′′. Since (K◦)−1

and (Kc◦)−1 does not exist, expression (8) cannot be directly
turned into a practical inversion problem. However, it does
serve to validate our new forward model M̃(G,Q;P′).

To invert this operator, we propose to invert an approximate
M̃(G,Q;P′) that only includes the first few terms of (7). Fig-
ure 1 demonstrates a justification of this approach with shot-
gather representations of the different terms in (7) for a syn-
thetic dataset with missing near-offset traces (up to 75 m). Com-
paring panels (d) and (g), it is evident that just the first three
terms of (7) is enough to model most of the significant multiple
contributions from the missing data p′′.

Algorithms

With the new forward-modeling operator M̃(G,Q;P′) we can
again redefine a new optimization problem based on (3):

min
g, q
‖g‖1 subject to f (g,q;p′)≤ σ , (9)

f (g,q;p′) := ‖p′− M̃(g,q;p′)‖2.

Compared to the EPSI problem with fully-sampled data (1), the
new problem (9) is no longer a linear misfit problem in terms
of g. In Lin and Herrmann (2013), we relied on the bilinear
property of f (g,q;p′) in terms of g and q in order to solve
problem (1). Below we will discuss two possible approaches
to modify our solution strategy to account for the additional
non-linear auto-convolution terms in M̃(G,Q;P′).

Modified Gauss-Newton

Several existing works on regularized inversion of auto-
convolution functions rely on either the Gauss-Newton method
or more generally the Levenberg-Marquardt method (Fleischer
et al., 1999; Fleischer and Hofmann, 1996). In the same vein,
we can adopt a modified Gauss-Newton method introduced in
Li et al. (2012) to heuristically obtain sparse solutions to (9).

The crux of this approach is to always ensure that the model
updates ∆g are the sparsest possible for any given amount of
decrease in f (g,q;p′). This is achieved most effectively by
taking as updates the solution to a Lasso problem (Tibshirani,
1996) around the current Jacobian:

∆gk+1 = argmin
g

∇M̃gk g s.t. ‖g‖1 ≤ τk, (10)

where k is the Gauss-Newton iteration count, and τk is an
iteration-dependent `1-norm constraint determined in closed-
form from the Pareto curve associated with (10) (c.f. line 5 of
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(a) data P′
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(b) exact multiple GP
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(c) inexact multiple GP′
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(d) multiple contribution from
P′′ (difference of b and c)
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(e) expression (5)
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(f) expression (6)
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Figure 1: Shot-gathers of various multiple contribution terms in the auto-convolution based forward modeling operator M̃(G,Q;P′)
(shown in expression 7) when applied to a synthetic dataset with missing near-offsets in p′′, and the correct values for g and q. Panels
(e) and (f) are respectively the first two terms of M̃(G,Q;P′) involving auto-convolutions with g (expressions 5 and 6). Comparing
panels (d) and (g), it is evident that just the first three terms of (7) is enough to model most of the significant multiple contributions
from the missing data p′′.

Algorithm 1 in Li et al., 2012). Although this method does not
claim to solve (9) exactly, it has been demonstrated to work
well at giving sparse solutions to non-linear problems such as
full-waveform inversion.

Re-linearization

Another heuristical method is to adapt the same approach used
in Lin and Herrmann (2013) for the fully-sampled EPSI prob-
lem by simply re-linearizing the forward modeling operator at
each iteration of the REPSI algorithm (c.f. line 9 of Algorithm
1 in Lin and Herrmann, 2013) by

M̃Gk (G) =K◦
[
GQk +RGP′

+ RGkKc ◦ (GQk +RGP′)+ ...
]
.

Compared to the modified Gauss-Newton, this approach avoids
computing the action of the Jacobian of f (g,q;p′), which saves

the computational cost of one wavefield convolution per term
used in M̃(G,Q;P′). As we see below in numerical experi-
ments on real data, the two approaches gives comparable perfor-
mance, and both approaches outperform pre-EPSI interpolation
by parabolic Radon.

EXPERIMENTS
We now demonstrate the effectiveness of the auto-convolution
based problem using a shallow-water marine dataset with 100
m of missing near-offset data. The data has been pre-processed
via up-down decomposition to be the upgoing wavefield, and a
3D-to-2D correction of

√
t has been applied to the data.

Figure 2 show the REPSI results on this field dataset with miss-
ing near-offsets using various methods. Figure 2b shows REPSI
results by pre-interpolation using parabolic Radon, which is
known to under-estimate near-offset amplitudes, while Fig-
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Figure 2: NMO stacks of various REPSI on real marine streamer data. Compared to parabolic Radon interpolation, our approach
succeeds in removing more coherent multiple energy from the data. We also see relatively minor differences between the modified
Gauss-Newton and the re-linearization schemes to solve (9), and virtually no difference by using more auto-convolution terms in the
modified modeling operator M̃(G,Q;P′). See the text for more detail.

ures 2c and 2d show results obtained by solving M̃(G,Q;P′)
using the re-linearization strategy. Looking at the difference
plot 2f, our approach is much more successful at removing
coherent multiple energy. Figure 2g shows that very little addi-
tional accuracy is gained by incorporating successively higher-
order auto-convolution terms in M̃(G,Q;P′). Finally, 2e and 2h
shows a modified Gauss-Newton solution to the problem. We
see relatively minor differences that is mostly phase errors.

SUMMARY
We have presented a variation of the EPSI problem that ac-
counts for data gaps by implicitly account for it in the inversion
model without explicit data reconstruction steps. We proposed
two methods to solve this new non-linear problem, and have
demonstrated its efficacy on real marine streamer data. We note

that this scheme does not wholly account for undersampling
issues in the data, which causes more severe aliasing problems
in the multiple step which cannot be wholly mitigated reliably
using the approaches shown here.
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