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SUMMARY

Approximate message passing (AMP) is a computation-
ally effective algorithm for recovering high dimensional
signals from a few compressed measurements. In this
paper we use AMP to solve the seismic trace interpo-
lation problem. We also show that we can exploit the
fast AMP algorithm to improve the recovery results of
seismic trace interpolation in curvelet domain, both in
terms of convergence speed and recovery performance
by using AMP in Fourier domain as a preprocessor for
the `1 recovery in Curvelet domain.

INTRODUCTION

Regular sampling along the time axis is common ap-
proach for seismic imaging. However, seismic data are
often spatially undersampled due to economical reasons
as well as ground surface limitations. Too large spatial
sampling interval may result in spatial aliasing. Oper-
ational conditions might also result is noisy traces or
even gaps in coverage and irregular sampling which of-
ten leads to image artifacts. Seismic trace interpolation
aims to interpolate missing traces in an otherwise regu-
larly sampled seismic data to a complete regular grid.
Compressed sensing (CS) is a data acquisition technique
to efficiently acquiring and recovering high-dimensional
signals from seemingly incomplete linear measurements,
provided that the signal is sparse or compressible in
some transform domain (Donoho (2006); Candès et al.
(2006)). Several works have shown that the structure
of seismic wavefronts can be captured by a few sig-
nificant transform coefficients (e.g., curvelet or Fourier
coefficients) and the problem of seismic trace interpo-
lation can be cast as a sparse recovery problem once
the data is transformed into a suitable domain, e.g.,
discrete Fourier transform (DFT) (Sacchi and Ulrych
(1996); Liu and Sacchi (2004)), Radon transform (Thor-
son and Claerbout (1985); Hampson et al. (1986); Her-
rmann et al. (2000)), or curvelet transform (Hennen-
fent and Herrmann (2005, 2006, 2008); Naghizadeh et al.
(2010)). Hence, the interpolation problem becomes that
of finding transform domain coefficients with the small-
est `1 norm that satisfy the subsampled measurements.
In this paper we first consider using curvelet transform
as the sparsifying transform (see, e.g., Hennenfent and
Herrmann (2006)). Curvelet transform is a redundant
transform which expands the size of the model and has
been shown to be very effective in capturing the struc-
ture of the data with very few significant coefficients.

Then, we recover the resulting compressible signal by
solving a convex minimization problem. Next we con-
sider using Fourier transform as the transform operator.
The resulting transform is not as effective as curvelet
transform (in terms of sparsity of the resulting trans-
form). However, the transformed data can still be ap-
proximated by a solving a sparse recovery problem which
is much faster than the curvelet case. This is due to two
reasons. First one is the availability of very fast DFT
transforms and second is the applicability of approx-
imate message passing (AMP) for this problem. AMP
(Donoho et al. (2009)) is a fast (needs few matrix-vector
multiplications) iterative `1 recovery algorithm which
can be used to recover sparse Fourier coefficients (The
current variants of AMP can not recover curvelet coef-
ficients). Also notice that AMP can be used to speed
up interpolation techniques that work on small high di-
mensional windows.
In this paper we use AMP with Fourier transform coeffi-
cients to generate relatively good approximations of the
seismic data which is used to enhance the speed and
recovery performance of seismic trace interpolation in
the curvelet domain. First we formulate the problem
of seismic trace interpolation as a sparse recovery prob-
lem. Next we explain the approach we take to solve this
problem both from the curvelet transform and Fourier
transform coefficients and then we present the 2-stage
algorithm which combines these two approaches.

PROBLEM FORMULATION

Consider a seismic line with Ns sources located on earth
surface which send sound waves into the earth and Nr

receivers record the reflection in Nt time samples. Rear-
ranging the seismic line, we have a signal f 2RN , where
N =NsNrNt. Assume x= Sf where x is the sparse rep-
resentation of f in some transform domain. We want to
recover a very high dimensional seismic data volume x
by interpolating between a smaller number of measure-
ments b=RMf , where RM is a sampling operator com-
posed of the product of a restriction matrix R, which
specifies the sample locations that have data and a mea-
surement basis matrix M . To overcome the problem of
high dimensionality, recovery is performed by first par-
titioning the seismic data volumes into frequency slices
and then solving a sequence of individual subproblems
(Mansour et al. (2013)). For each partition j, let b(j) be
the subsampled measurements of data f(j) in partition j
and the corresponding measurement matrix is given by
A(j) = R(j)SH (Notice that the superscript H denoted
the Hermitian transpose and for simplicity, we have as-



sumed the measurement matrix M to be the identity).
Then for each partition we need to estimate the solution
of the following minimization problem independently:

ex(j) := arg min
u

kuk0 s.t. A(j)u= b(j); (1)

and then f(j) is approximated by SHex(j).
Recovery in curvelet domain with convex optimization
In this case SC 2CP�N is the curvelet transform which
is used as the sparsifying transform S. For each par-
tition we use the 2-D curvelet transform where P

N
� 8

which is highly redundant and allows for sparse repre-
sentations of the data in the transformed domain. No-
tice that in this case A(j) =R(j)SHC . The minimization
problem (1) is a combinatorial problem and therefore
we approximate the solution by the following convex
relaxation:

ex(j)
`1

:= arg min
u

kuk1 s.t. A(j)u= b(j); (2)

and then f(j) is approximated by SHC ex(j)`1
. Here kuk1 =

NP
i=1

juij and (2) can be efficiently solved by algorithms

like SPGL1 (Van Den Berg and Friedlander (2007)).
Mansour et al. (2013) noted that although partitioning
the data using and 2-D curvelets reduces the size of the
problem, it doesn’t utilize the continuity across parti-
tions. Therefore they suggest using support set of each
partition as a support estimate for the next one. For
partition j > 1 assume Tj := supp(SCSHC ex(j�1)jk) which
is the locations of the largest k entries of SCSHC ex(j�1)
in magnitude and define the weight vector w 2RN such
that wj =1 for j =2 Tj and wj =! < 1 for j 2 Tj , where k
is chosen to be the number of largest transform-domain
coefficients that contribute 95% of the signal energy.
Mansour et al. (2012) prove that solving the following
weighted `1 minimization results in better recovery com-
pared to (2) if the support estimate Tj is at least 50%
accurate:

ex(j)
w`1

:= argmin
u

kuk1;wj s.t. A
(j)u= b(j); (3)

where kuk1;wj =
NP
i=1

wijuij is the weighted `1 norm of u.

Recovery in Fourier domain with AMP
In this case we use DFT matrix SF 2CN�N as the spar-
sifying operator. Hence, A(j) = R(j)SF is the subsam-
pled 2-D DFT matrix. To solve (1) the AMP algorithm
(Donoho et al. (2009)) starts from an initial x0amp and
an initial threshold �̂0 = 1 and iteratively goes by

xt+1amp = �(xtamp+A(j)Hzt;� t);

zt = y�A(j)xtamp+ ��1zt�1h�0(xt�1amp+A(j)Hzt�1;� t�1)i;
(4)

and ex(j)amp = x
tfinal
amp where tfinal is the number of times

we iterate the algorithm. Here SHF xtamp is the current
estimate of f(j), zt is the current residual, h�i is the
arithmetic mean, and � is the soft thresholding func-
tion [�(a;s)]j = sign(aj)(aj � s)+. This function acts
on the coefficients of the signal a and zeroes out any
value which is less than the scalar s in magnitude.
Similar to the previous case we can utilize the continuity
of seismic data across partitions to estimate the support
set of each partition. As before Tj := supp(SFSHF x(j�1)jk)
and the weight vector w is defined such that wj = 1 for
j =2 Tj and wj = ! < 1 for j 2 Tj . Ghadermarzy and Yil-
maz (2013) incorporate this prior support information
into the AMP algorithm by the following iterations:

xt+1wamp = �(xtwamp+A(j)Hzt;� twj);

zt = y�A(j)xtwamp+ ��1zt�1h�0(xt�1wamp+A(j)Hzt�1;� t�1wj)i:
(5)

The only difference between AMP and weighted AMP
(WAMP) is in the value of the thresholds which is set to
be a smaller value for the coefficients in the support esti-
mate which makes them more likely to remain nonzero.
In Figures 1.a-f we compare the performance of AMP
and WAMP (in Fourier domain) with weighted `1 (in
curvelet domain) on recovering a seismic line from the
Gulf of Suez with 50% randomly subsampled receivers.
The seismic line at full resolution has Ns = 178 sources,
Nr = 178 receivers, and Nt = 500 time samples acquired
with a sampling interval of 4 ms. Consequently, the
seismic line contains samples collected in a 1s temporal
window with a maximum frequency of 125 Hz. To access
the frequency slices we take the 1-D DFT of the data
along time axis and interpolate the missing receivers by
solving the seismic trace interpolation with weighted `1,
AMP and weighted AMP algorithms explained above
(Results of `1 minimization is omitted as the weighted
`1 minimization is always giving better results (Man-
sour et al. (2013)). Notice that reconstruction results of
weighted AMP is better than those of AMP.

2-STAGE ALGORITHM

As mentioned before AMP algorithm is a significantly
fast algorithm and Figure 1 shows that although the
results of weighted `1 is better than those of weighted
AMP, the results of weighted AMP is still reasonably
good (considering that weighted AMP is about 40 times
faster than the weighted `1 algorithm). Weighted `1
minimization in the curvelet domain gives much better
results which is due to the better choice of sparsifying
transform domain. On the other hand AMP is a very
fast algorithm that approximates the true data reason-
ably good. Notice that both these algorithms are solv-
ing the same problem in different transform domains.

2



Weighted L
1
 minimization in SR

Distance (m)

Ti
m

e(
se

c)

500 1000 1500 2000

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(a) Recovery by weighted `1 in curvelet domain
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(b) Weighted `1 error
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(c) Recovery by AMP in Fourier domain
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(d) AMP error
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(e) Recovery by weighted AMP in Fourier domain
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(f) WAMP error
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(g) 2-stage reconstruction

WAMP+W−L
1
 error image in SR

Distance (m)

Ti
m

e(
se

c)

500 1000 1500 2000

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(h) 2-stage error

Figure 1: Comparison of the different recovery methods. Figures show recovered shotgather number 84 from sub-
sampled seismic line from the Gulf of Suez. Figures on the left show the reconstructions and figures on the right
show the recovery errors for weighted `1 (a, b), AMP (c, d), WAMP (e,f), and the 2-stage algorithm (g, h).

Therefore, we can combine these algorithms to use both
the fast convergence of AMP algorithm and superior re-
sults of weighted `1. Notice that at each partition j,

f(j) is approximated by:

weighted `1 : f(j) � SHC ex(j)w`1

weighted AMP : f(j) � SHF ex(j)wamp

(6)
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Hence the outcome of the weighted `1 algorithm can
be approximated by the final outcome of the weighted
AMP algorithm (which is in Fourier domain) through:

SHC ex(j)w`1
� SHF ex(j)wamp: (7)

Hence, we propose a 2-stage algorithm, that for each
partition j first we apply the weighted AMP algorithm
(5) in the Fourier domain to get the estimate SHC ex(j)w`1

.

Next we use the largest coefficients of SC SHF ex(j)wamp

as a support estimate for ex(j)
w`1

and solve a weighted `1
algorithm in the curvelet domain. Figure 2 shows an
example of the accuracy achieved to predict the sup-
port of the curvelet coefficients in a seismic line when
we just use the adjacent frequency slices (the weighted
`1 case) and when we combine the information of the
previous frequency slice with the approximation gained
by WAMP. Here the support is chosen to be the set
of largest transform-domain coefficients that contribute
95% of the signal energy. The support estimate gained
by the 2-stage algorithm is always better than the es-
timate gained by the previous slice. We also feed the
approximation SC SHF ex(j)wamp into the weighted `1 al-
gorithm as a good initial point for the SPGL1 algorithm.
As the curvelet transform is a redundant transform, we
can not mathematically justify why this choice of initial
point improves the convergence rate. However, empiri-
cal results show significant improvement when we feed
the result of WAMP into the `1 algorithm. Figures 1.g-
h show the recovery results by the 2-stage algorithm. In
Table 1 we have compared the number of matrix-vector
multiplications and average time it takes for the above
algorithms to recover different frequency slices. The 2-
stage algorithm presented uses fewer curvelet transforms
compared to the weighted `1 which makes it faster. Fig-
ure 3 shows the SNRs achieved by `1, weighted `1, AMP,
Weighted AMP, and the 2-stage algorithms for different
shot gathers. The results of the 2-satge algorithm is
always better than the weighted `1.

Comparison of different methods
recovery
method

# of DFT
transforms

# of curvelet
transforms

average
runtime

weighted `1 0 1125 924s

AMP 1000 0 14s

WAMP 1000 0 14s

2-stage
WAMP+w`1

1000 440 420s

Table 1: Comparison of approximate average compu-
tational complexity for different recovery methods in
Figure 1 averaged over frequency slices.
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Figure 2: Example of the accuracy achieved in estimat-
ing the support of a frequency slice by using the 2-stage
algorithm and the weighted `1 algorithm.
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Figure 3: Comparison of the SNRs achieved by differ-
ent methods explained above in recovering shot gathers
from the Suez seismic line in the source-receiver domain.

CONCLUSIONS

In this abstract we showed how we can use the ap-
proximate message passing algorithm for the problem
of seismic trace interpolation. Due to fast nature of
AMP algorithm and the DFT transform we can get a
good approximation of the seismic shot gathers much
faster than doing the interpolation in the curvelet do-
main. Hence, AMP can be used as a fast preprocessor
for interpolation in curvelet domain. This result shows
that doing this not only improves the recovery results
significantly and but also the 2-stage algorithms need
less SPGL1 iterations (with curvelets) to get to a good
approximation once the fast WAMP algorithms is done
in the Fourier domain.
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