Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2013 SLIM group @ The University of British Columbia.

Time-jittered ocean bottom seismic acquisition Haneet Wason and Felix J. Herrmann

Challenges

Need for full sampling

- wave-equation based inversion (RTM & FWI)
- SRME/EPSI or related techniques
- Full azimuthal coverage
 - multiple source vessels
 - simultaneous/blended acquisition
- Deblending or wavefield reconstruction
 - recover unblended data from blended data
 - challenging to recover weak late events

Motivation

Rethink marine acquisition (OBC, OBN)

- sources (and receivers) at random locations
- exploit *natural* variations in the acquisition (e.g., cable feathering)
- as long as you know where sources were afterwards... it is fine!

Want more for less ...

- shorter survey times
- increased spatial sampling

ations ition (e.g., cable feathering) vere afterwards... *it is fine*!

Motivation

Rethink marine acquisition (OBC, OBN)

- sources (and receivers) at random locations
- exploit *natural* variations in the acquisition (e.g., cable feathering)
- as long as you know where sources were afterwards... it is fine!

Want more for less ...

- shorter survey times
- increased spatial sampling

How is this possible?

- (multi) vessel acquisition w/ jittered sampling & "blending" via compressed randomized intershot firing times
- sparsity-promoting recovery using ℓ_1 constraints ("deblending")

More for less

PERIODIC-SPARSE-NO OVERLAP

PERIODIC & DENSE

Outline

- Measurement model & recovery strategy
- Design of *jittered*, ocean bottom acquisition
 - jitter in time \Rightarrow jittered in space (shot locations)
- Experimental results of sparsity-promoting processing
 wavefield recovery via "deblending" & interpolation from (coarse) jittered/irregular to (fine) regular sampling grid

Compressed Sensing

Successful sampling & reconstruction scheme

- exploit structure via sparsifying transform
- subsampling decreases sparsity
- Iarge scale optimization look for sparsest solution

Time-jittered acquisition

Compress inter-shot times

- random jitter in time \implies jitter in space for a given speed
- discrete jittering start by being on the grid
- maximum (acquisition) gap effectively controlled

Challenges: recover fully sampled data from jittered data and remove overlaps (but no fear..... sparse recovery is here!)

Recent work - use non-uniform grid

id [Hennenfent et.al., 2010]

Measurement model

Solve an underdetermined system of linear equations:

acquire in the field on irregular grid (subsampled shots w/ overlap between shot records)

would like to have on regular grid (all shots w/o overlaps between shot records)

Sparsity-promoting recovery

Exploit curvelet-domain sparsity of seismic data

Sparsity-promoting program:

Sparsity-promoting solver: $SPG\ell_1$ [van den Berg and Friedlander, 2008]

Recover single-source prestack data volume: $\tilde{d} = S^{H} \tilde{x}$

Outline

Measurement model & recovery strategy

Design of *jittered*, ocean bottom acquisition jitter in *time* ⇒ jittered in *space* (shot locations)

 Experimental results of sparsity-promoting processing
 wavefield recovery via "deblending" & interpolation from (coarse) jittered/irregular to (fine) regular sampling grid

Sampling schemes

[Hennenfent et.al., 2008]

Conventional vs. jittered sources [Speed of source vessel = 5 knots \approx 2.5 m/s]

Conventional vs. jittered sources [Speed of source vessel = 5 knots ≈ 2.5 m/s]

S

Significant spatial jittering

S

Simultaneous source acquisition & deblending

- A new look at simultaneous sources by Beasley et. al., '98, '08
- High quality separation of simultaneous sources by sparse inversion by Abma et. al., '13
- Changing the mindset in seismic data acquisition by Berkhout, '08
- Utilizing dispersed source arrays in blended acquisition by Berkhout et. al., '12
- Random sampling: a new strategy for marine acquisition by Moldoveanu, '10
- Multi-vessel coil shooting acquisition by Moldoveanu, '10
- Simultaneous source separation by sparse radon transform by Akerberg et. al., '08
- Simultaneous source separation using dithered sources by Moore et. al., '08
- Simultaneous source separation via multi-directional vector-median filter by Huo et. al., '09

```
Separation of blended data by iterative estimation and subtraction of blending interference noise by Mahdad et. al., 'I
```


Our approach

Combination of

- multiple-source time-jittered acquisition
 - random jitter in time \implies jitter in space for a constant speed (favours recovery compared to periodic sampling)
 - shorter acquisition times
- sparsity-promoting processing
 - data is sparse in curvelets
 - optimization: use ℓ_1 constraints

Address two challenges - overlap and jittered sampling (regularize & interpolate)

Outline

- Design of *jittered*, ocean bottom acquisition - jitter in time \Rightarrow jittered in space (shot locations)
- Experimental results of sparsity-promoting processing - wavefield recovery via "deblending" & interpolation from (coarse) jittered/irregular to (fine) regular sampling grid

Time-jittered OBC acquisition [1 source vessel, speed = 5 knots, underlying grid: 25 m] [no. of jittered source locations is half the number of sources in ideal periodic survey w/o overlap]

MEASUREMENTS (b)

Sparsity-promoting recovery on the grid (14.2 dB) ["deblending" + interpolation from *jittered* 50m grid to *regular* 25m grid]

RECEIVER GATHER

Sparsity-promoting recovery on the grid (14.2 dB) ["deblending" + interpolation from *jittered* 50m grid to *regular* 25m grid] (difference)

FDCT vs. NFDCT

FAST DISCRETE CURVELET TRANSFORM

NON-EQUISPACED FAST DISCRETE CURVELET TRANSFORM

Recovery with FDCT ('binning') ["deblending" + interpolation from *jittered* 50m grid to *regular* 25m grid]

SEPARATION RESULT

DIFFERENCE

Recovery with FDCT ('binning') ["deblending" + interpolation from *jittered* 50m grid to *regular* 25m grid]

SEPARATION RESULT

DIFFERENCE

Sparsity-promoting recovery on irregular grid with NFDCT (17.6 dB)

["deblending" + interpolation from *jittered* 50m grid to regular 25m grid]

RECEIVER GATHER

Sparsity-promoting recovery on irregular grid with NFDCT (17.6 dB) ["deblending" + interpolation from *jittered* 50m grid to *regular* 25m grid]

RECEIVER GATHER

Sparsity-promoting recovery on irregular grid with NFDCT (17.6 dB)

RECEIVER GATHER

["deblending" + interpolation from *jittered* 50m grid to *regular* 25m grid] (difference)

Performance

Improvement spatial sampling ratio

<u>no. of spatial grid points recovered from jittered sampling via sparse recovery</u> no. of spatial grid points in conventional sampling

$$=\frac{128}{64}=2$$

Multiple source vessels

- improves recovery shorter times lead to better spatial sampling at the expense of more overlap
- better azimuthal coverage

Time-jittered OBC acquisition

[2 source vessels, speed = 5 knots, underlying grid: 25 m] [no. of *jittered* source locations is *half* the number of sources in *ideal* periodic survey w/o overlap]

MEASUREMENTS (b)

Sparsity-promoting recovery on irregular grid with NFDCT (21.5 dB)

["deblending" + interpolation from *jittered* 50m grid to regular 25m grid]

RECEIVER GATHER

Sparsity-promoting recovery on irregular grid with NFDCT (21.5 dB) ["deblending" + interpolation from *jittered* 50m grid to regular 25m grid]

RECEIVER GATHER

Sparsity-promoting recovery on irregular grid with NFDCT (21.5 dB)

["deblending" + interpolation from *jittered* 50m grid to regular 25m grid] (difference)

RECEIVER GATHER

Time-jittered OBC acquisition

[2 source vessels, speed = 5 knots, underlying grid: 12.5 m] [no. of jittered source locations is one-fourth the number of sources in ideal periodic survey w/o overlap]

Sparsity-promoting recovery on irregular grid with NFDCT (16.8 dB)

["deblending" + interpolation from *jittered* 50m grid to regular 12.5m grid]

RECEIVER GATHER

Sparsity-promoting recovery on irregular grid with NFDCT (16.8 dB) ["deblending" + interpolation from jittered 50m grid to regular 12.5m grid]

RECEIVER GATHER

Sparsity-promoting recovery on irregular grid with NFDCT (16.8 dB)

RECEIVER GATHER

["deblending" + interpolation from *jittered* 50m grid to *regular* 12.5m grid] (difference)

Performance

Improvement spatial sampling ratio

<u>no. of spatial grid points recovered from jittered sampling via sparse recovery</u> no. of spatial grid points in conventional sampling

$$=\frac{128}{32}=4$$

Summary

	deblend + interpolate (jittered (m) to regular (m))	sparsity-promoting recovery with NFDCT [SNR (dB)]
1 source vessel (2 airgun arrays)	50 to 25	17.6
	50 to 12.5	12.7
2 source vessels (2 airgun arrays per vessel)	50 to 25	21.5
	50 to 12.5	16.8

Observations

- With sparsity-promoting recovery we can:
 - deblend recover the wavefield, and
 - regularize from a *jittered/irregular* to a regular grid
 - interpolate from a coarse jittered (50m) grid to a fine regular grid (25m, 12.5m, and finer)

Time-jittered marine acquisition is an instance of compressed sensing

Acknowledgements

This work was in part financially supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant (22R81254) and the Collaborative Research and Development Grant DNOISE II (375142-08). This research was carried out as part of the SINBAD II project with support from the following organizations: BG Group, BGP, BP, Chevron, ConocoPhillips, Petrobras, PGS, Total SA, and WesternGeco.

Thank you!

