Time-jittered ocean bottom seismic acquisition

Haneet Wason and Felix J. Herrmann
Challenges

- Need for full sampling
 - wave-equation based inversion (RTM & FWI)
 - SRME/EPSI or related techniques

- Full azimuthal coverage
 - multiple source vessels
 - simultaneous/blended acquisition

- Deblending or wavefield reconstruction
 - recover unblended data from blended data
 - challenging to recover weak late events
Motivation

Rethink marine acquisition (OBC, OBN)
- sources (and receivers) at *random* locations
- exploit *natural* variations in the acquisition (e.g., cable feathering)
- as long as you know where sources were afterwards... *it is fine!*

Want more for less ...
- *shorter* survey times
- *increased* spatial sampling
Motivation

Rethink marine acquisition (OBC, OBN)
- sources (and receivers) at random locations
- exploit natural variations in the acquisition (e.g., cable feathering)
- as long as you know where sources were afterwards... it is fine!

Want more for less ...
- shorter survey times
- increased spatial sampling

How is this possible?
- (multi) vessel acquisition w/ jittered sampling & “blending” via compressed randomized intershot firing times
- sparsity-promoting recovery using ℓ_1 constraints (“deblending”)
More for less

CONVENTIONAL

PERIODIC–SPARSE–NO OVERLAP

JITTERED

APERIODIC COMPRESSED OVERLAPPING IRREGULAR

(NO OVERLAP)

ℓ₁ RECOVERED

PERIODIC & DENSE

2X
Outline

- Measurement model & recovery strategy
- Design of jittered, ocean bottom acquisition
 - jitter in time \Rightarrow jittered in space (shot locations)
- Experimental results of sparsity-promoting processing
 - wavefield recovery via “deblending” & interpolation from (coarse) jittered/irregular to (fine) regular sampling grid
Compressed Sensing

Successful sampling & reconstruction scheme

- exploit structure via sparsifying transform
- subsampling – decreases sparsity
- large scale optimization – look for sparsest solution
Time-jittered acquisition

Compress inter-shot times

- *random jitter in time* \rightarrow *jitter in space* for a given speed
- *discrete jittering* - start by being *on the grid*
- maximum (acquisition) gap effectively controlled

Challenges: recover fully sampled data from *jittered* data *and* remove overlaps (but no fear..... sparse recovery is here!)

Recent work - use *non-uniform* grid

[Hennenfent et.al., 2010]
Measurement model

Solve an *underdetermined* system of linear equations:

\[
\begin{align*}
\mathbf{b} \in \mathbb{C}^n & \quad \text{(data)} \\
\mathbf{x}_0 & \quad \text{(unknown)} \\
\mathbf{A} \in \mathbb{C}^{n \times P} & \quad \text{(transform matrix)} \\
\mathbf{A}^{\mathsf{H}} & \quad \text{(sampling matrix)} \\
\mathbf{b} & = \mathbf{A}\mathbf{x}_0 \quad \text{(RMS)}
\end{align*}
\]
acquire in the field on *irregular* grid
(subsampled shots *w/ overlap* between shot records)

would like to have on *regular* grid
(all shots *w/o overlaps* between shot records)

\[b = \text{RM} \]
Exploit curvelet-domain sparsity of seismic data

Sparsity-promoting program:

\[
\tilde{x} = \arg \min_{x} \|x\|_1 \quad \text{subject to} \quad Ax = b
\]

- Support detection
- Data-consistent amplitude recovery

Sparsity-promoting solver: SPGL1 [van den Berg and Friedlander, 2008]

Recover single-source prestack data volume: \(\tilde{d} = S^H\tilde{x}\)
Outline

- Measurement model & recovery strategy

- **Design of jittered, ocean bottom acquisition**
 - jitter in *time* ⇒ jittered in *space* (*shot* locations)

- Experimental results of *sparsity*-promoting processing
 - wavefield recovery via “deblending” & interpolation from (coarse) jittered/irregular to (fine) regular sampling grid
Sampling schemes

FULL SAMPLING

REGULAR UNDERSAMPLING
(\(\eta = 4\))

UNIFORM RANDOM UNDERSAMPLING
(\(\eta = 4\))

JITTERED UNDERSAMPLING
(\(\eta = 4\))

regularly undersampled spatial grid

[Hennenfent et.al., 2008]
Conventional vs. *jittered* sources

[Speed of source vessel = 5 knots ≈ 2.5 m/s]
Conventional vs. jittered sources

[Speed of source vessel = 5 knots ≈ 2.5 m/s]
Significant spatial jittering
Simultaneous source acquisition & deblending

- A new look at simultaneous sources by Beasley et. al., ’98, ’08
- High quality separation of simultaneous sources by sparse inversion by Abma et. al., ’13
- Changing the mindset in seismic data acquisition by Berkhout, ’08
- Utilizing dispersed source arrays in blended acquisition by Berkhout et. al., ’12
- Random sampling: a new strategy for marine acquisition by Moldoveanu, ’10
- Multi-vessel coil shooting acquisition by Moldoveanu, ’10
- Simultaneous source separation by sparse radon transform by Akerberg et. al., ’08
- Simultaneous source separation using dithered sources by Moore et. al., ’08
- Simultaneous source separation via multi-directional vector-median filter by Huo et. al., ’09
- Separation of blended data by iterative estimation and subtraction of blending interference noise by Mahdad et. al., ’11
Our approach

Combination of

- multiple-source *time-jittered* acquisition
 - *random jitter* in time \implies *jitter* in *space* for a constant speed
 (favours recovery compared to *periodic* sampling)
 - shorter acquisition times

- *sparsity*-promoting processing
 - *data* is sparse in *curvelets*
 - *optimization*: use ℓ_1 constraints

Address two challenges - *overlap* and *jittered sampling* (regularize & interpolate)
Outline

- Measurement model & recovery strategy
- Design of jittered, ocean bottom acquisition
 - jitter in time ⇒ jittered in space (shot locations)

- Experimental results of sparsity-promoting processing
 - wavefield recovery via “deblending” & interpolation from (coarse) jittered/irregular to (fine) regular sampling grid
Time-jittered OBC acquisition

[1 source vessel, speed = 5 knots, underlying grid: 25 m]

[no. of jittered source locations is half the number of sources in ideal periodic survey w/o overlap]
Sparsity-promoting recovery on the grid (14.2 dB)
[“deblending” + interpolation from jittered 50m grid to regular 25m grid]
Sparsity-promoting recovery on the grid (14.2 dB)
[“deblending” + interpolation from jittered 50m grid to regular 25m grid]
(difference)
FDCT vs. NFDCT

FAST DISCRETE CURVELET TRANSFORM

Input t

2-D FFT

\rightarrow

curvelet tilling k

2-D IFFT

\rightarrow

curvelet coefficients

NON-EQUISPACED FAST DISCRETE CURVELET TRANSFORM

Input t

1-D FFT on t

1-D NFFT on x

\rightarrow

curvelet tilling k

1-D IFFT on f

1-D INFFT on k

\rightarrow

curvelet coefficients
NFFT-generated data

Receiver Gather

Shot Gather
Recovery with FDCT (‘binning’)

[“deblending” + interpolation from jittered 50m grid to regular 25m grid]
Recovery with FDCT (‘binning’)
[“deblending” + interpolation from jittered 50m grid to regular 25m grid]
Sparsity-promoting recovery on irregular grid with NFDCT (17.6 dB)
[“deblending” + interpolation from jittered 50m grid to regular 25m grid]
Sparsity-promoting recovery on *irregular* grid with NFDCT (17.6 dB)

[“deblending” + interpolation from *jittered* 50m grid to *regular* 25m grid]
Sparsity-promoting recovery on *irregular* grid with NFDCT (17.6 dB)

[“deblending” + interpolation from *jittered* 50m grid to *regular* 25m grid] (difference)
Performance

Improvement spatial sampling ratio

\[
= \frac{\text{no. of spatial grid points recovered from jittered sampling via sparse recovery}}{\text{no. of spatial grid points in conventional sampling}}
\]

\[
= \frac{128}{64} = 2
\]
Multiple source vessels

- *improves* recovery – *shorter* times lead to better *spatial* sampling at the expense of *more* overlap

- better *azimuthal* coverage
Time-jittered OBC acquisition

[2 source vessels, speed = 5 knots, underlying grid: 25 m]

[no. of jittered source locations is half the number of sources in ideal periodic survey w/o overlap]
Sparsity-promoting recovery on *irregular* grid with NFDCT (21.5 dB)
[“deblending” + interpolation from *jittered* 50m grid to *regular* 25m grid]
Sparsity-promoting recovery on *irregular* grid with NFDCT (21.5 dB)

[“deblending” + interpolation from *jittered* 50m grid to *regular* 25m grid]
Sparsity-promoting recovery on *irregular* grid with NFDCT (21.5 dB)

[“deblending” + interpolation from *jittered* 50m grid to *regular* 25m grid]

(difference)
Time-jittered OBC acquisition

[2 source vessels, speed = 5 knots, underlying grid: 12.5 m]

[no. of jittered source locations is one-fourth the number of sources in ideal periodic survey w/o overlap]
Sparsity-promoting recovery on \textit{irregular} grid with NFDCT (16.8 dB)

[“deblending” + interpolation from \textit{jittered} 50m grid to \textit{regular} 12.5m grid]
Sparsity-promoting recovery on *irregular* grid with *NFDCT* (16.8 dB)

[“deblending” + interpolation from *jittered* 50m grid to *regular* 12.5m grid]
Sparsity-promoting recovery on \textit{irregular} grid with \textit{NFDCT} (16.8 dB)

[“deblending” + interpolation from \textit{jittered} 50m grid to \textit{regular} 12.5m grid] (difference)
Performance

Improvement spatial sampling ratio

\[
\text{Improvement spatial sampling ratio} = \frac{\text{no. of spatial grid points recovered from jittered sampling via sparse recovery}}{\text{no. of spatial grid points in conventional sampling}}
\]

\[
= \frac{128}{32} = 4
\]
<table>
<thead>
<tr>
<th></th>
<th>deblend + interpolate (jittered (m) to regular (m))</th>
<th>sparsity-promoting recovery with NFDCT [SNR (dB)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 source vessel</td>
<td>50 to 25</td>
<td>17.6</td>
</tr>
<tr>
<td>(2 airgun arrays)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>50 to 12.5</td>
<td>12.7</td>
</tr>
<tr>
<td>2 source vessels</td>
<td>50 to 25</td>
<td>21.5</td>
</tr>
<tr>
<td>(2 airgun arrays per vessel)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>50 to 12.5</td>
<td>16.8</td>
</tr>
</tbody>
</table>
Observations

- *Time-jittered* marine acquisition is an instance of *compressed sensing*

- With *sparsity*-promoting recovery we can:
 - *deblend* – recover the wavefield, and
 - *regularize* from a *jittered/irregular* to a *regular* grid
 - *interpolate* from a *coarse jittered* (50m) grid to a *fine regular* grid (25m, 12.5m, and finer)
Acknowledgements

This work was in part financially supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant (22R81254) and the Collaborative Research and Development Grant DNOISE II (375142-08). This research was carried out as part of the SINBAD II project with support from the following organizations: BG Group, BGP, BP, Chevron, ConocoPhillips, Petrobras, PGS, Total SA, and WesternGeco.

Thank you!