Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2013 SLIM group @ The University of British Columbia.

Dense shot-sampling via time-jittered marine sources Felix J. Herrmann, Tim Lin*, and Haneet Wason

Shot-time randomness: "low" vs "high" variability

low variability

Shot-time randomness: "low" vs "high" variability

high variability, easier to separate, better low-frequency recovery(?)

Spatial grid for sampling schemes

Shot-time randomness: "low" vs "high" variability

high variability, easier to separate, better low-frequency recovery(?)

Shot-time randomness: "low" vs "high" variability

high variability leads to source separation + regularization + interpolation

Regular 3-fold undersampling

Random 3-fold undersampling (discreet) Random 3-fold undersampling

(but not necessarily a bad thing)

Shot time variability leads to shot irregularity, necessitates regularization + interpolation

Shot time variability leads to shot irregularity, necessitates regularization + interpolation (but not necessarily a bad thing, if you take it into account)

Shot-time randomness: "low" vs "high" variability

Interpolation:

mitigating large spatial discontinuity

Source separation as sparse inversion

- $\mathbf{x} = \mathbf{D}\mathbf{z}$ (assume **x** is not sparse, but **z** is) $\tilde{\mathbf{x}} = \mathbf{D} \cdot \operatorname{argmin} \|\mathbf{z}\|_1$ subject to $\mathbf{y} = \mathbf{\Gamma}\mathbf{D}\mathbf{z}$ Ζ
- 1-norm measure of sparsity
- y is sim src data
- Γ is "blending" operator
- $\tilde{\mathbf{x}}$ is an estimated source separated wavefield • D is a transform domain synthesis (coefficients -> wavefield) • **z** is a choice of curvelet coefficients for **x**

Interpolation as sparse inversion

- $\mathbf{x} = \mathbf{D}\mathbf{z}$ (assume **x** is not sparse, but **z** is) $\tilde{\mathbf{x}} = \mathbf{D} \cdot \operatorname{argmin} \|\mathbf{z}\|_1$ subject to $\mathbf{y} = \mathbf{A}\mathbf{D}\mathbf{z}$ Ζ
- 1-norm measure of sparsity
- y is data with missing traces
- A is trace mask (match data at observed trace positions)
- $\tilde{\mathbf{x}}$ is an estimated interpolated wavefield
- D is a transform domain synthesis (coefficients -> wavefield) • **z** is a choice of curvelet coefficients for **x**

Src sep + Interp as sparse inversion

 $\mathbf{x} = \mathbf{D}\mathbf{z}$ (assume **x** is not sparse, but **z** is) \mathbf{Z}

- $\tilde{\mathbf{x}} = \mathbf{D} \cdot \operatorname{argmin} \|\mathbf{z}\|_1$ subject to $\mathbf{y} = \mathbf{\Gamma} \mathbf{A} \mathbf{D} \mathbf{z}$

Dealing with irregular shot locations

FDCT vs. NFDCT

fast discrete curvelet transform

non-equispaced fast discrete curvelet transform

Curvelet tiling $\lim_{\mathbf{x}} \frac{1}{2} \|\mathbf{y} - \mathbf{R}\mathbf{C}^{H}\mathbf{x}\|_{2}^{2} + \lambda_{1} \|\mathbf{x}\|_{1} + \lambda_{2} \|\mathbf{L}\mathbf{x}\|_{2}$

FDCT vs. NFDCT

fast discrete curvelet transform

non-equispaced fast discrete curvelet transform

Forward mapping of the inversion

 $\mathbf{x} = \mathbf{D}\mathbf{z}$ (assume **x** is not sparse, but **z** is) $\tilde{\mathbf{x}} = \mathbf{D} \cdot \operatorname{argmin} \|\mathbf{z}\|_1$ subject to $\mathbf{y} = \mathbf{\Gamma} \mathbf{A} \mathbf{D} \mathbf{z}$ Ζ

"Blending" operator

"Regularization" operator (time FFT + spatial nFFT)

"Sparsity transform" operator (Curvelet tiling in FK)

Design of highly variable time-jittered source firing times

Design of time-jittered shot times (low variation)

Design of time-jittered shot times (this talk)

10s

M

Air-gun recovery time

20s

Range for randomized shot time

Design of time-jittered shot times (this talk)

Assume boat speed 2.5m/s (5 knots)

25m

Air-gun recovery time

50m

Range for randomized shot time

Regular vs. Randomized locations [Speed of source vessel = 5 knots \approx 2.5 m/s]

Regular vs. Randomized locations [Speed of source vessel = 5 knots \approx 2.5 m/s]

Significant spatial jittering

Numerical examples

Recovery with FDCT ('binning')

["deblending" + interpolation from *jittered* 50m grid to regular 25m grid]

SEPARATION RESULT

DIFFERENCE

Recovery with FDCT ('binning')

["deblending" + interpolation from *jittered* 50m grid to regular 25m grid]

SEPARATION RESULT

DIFFERENCE

Sparsity-promoting recovery on irregular grid with NFDCT (17.6 dB)

["deblending" + interpolation from *jittered* 50m grid to regular 25m grid]

RECEIVER GATHER

Sparsity-promoting recovery on irregular grid with NFDCT (17.6 dB)

["deblending" + interpolation from *jittered* 50m grid to regular 25m grid]

RECEIVER GATHER

Sparsity-promoting recovery on irregular grid with NFDCT (17.6 dB)

["deblending" + interpolation from *jittered* 50m grid to regular 25m grid] (difference)

RECEIVER GATHER

Sparsity-promoting recovery on irregular grid with NFDCT (12.7 dB)

["deblending" + interpolation from jittered 50m grid to regular 12.5m grid]

0 0.5-Time (s) 1.5-2 -2.5-1000 500 1500 0 Source (m)

RECEIVER GATHER

Sparsity-promoting recovery on irregular grid with NFDCT (12.7 dB)

["deblending" + interpolation from jittered 50m grid to regular 12.5m grid]

RECEIVER GATHER

Sparsity-promoting recovery on irregular grid with NFDCT (12.7 dB)

["deblending" + interpolation from *jittered* 50m grid to regular 12.5m grid] (difference)

RECEIVER GATHER

Sparsity-promoting recovery on the 12.5m grid (11.1 dB) ["deblending" + interpolation from *jittered* 50m grid to *regular* 12.5m grid]

Sparsity-promoting recovery on the 12.5m grid (11.1 dB) ["deblending" + interpolation from *jittered* 50m grid to *regular* 12.5m grid] (difference)

RECEIVER GATHER

Sparsity-promoting recovery on the 12.5m grid (11.1 dB) ["deblending" + interpolation from *jittered* 50m grid to *regular* 12.5m grid]

RECEIVER GATHER

Sparsity-promoting recovery on the 12.5m grid (11.1 dB) ["deblending" + interpolation from *jittered* 50m grid to *regular* 12.5m grid] (difference)

RECEIVER GATHER

Regular grid, jittered, FDCT recovery

	deblend + interpolate (jittered (m) to regular (m))	sparsity-promoting recovery with FDCT [SNR (dB)]
1 source vessel (2 airgun arrays)	50 to 25	14.2
	50 to 12.5	11.1
2 source vessels (2 airgun arrays per vessel)	50 to 25	19.7
	50 to 12.5	15.0

Irregular grid, NFDCT recovery

	deblend + interpolate (nominal (m) to regular (m))	sparsity-promoting recovery with NFDCT [SNR (dB)]
1 source vessel (2 airgun arrays)	50 to 25	17.6
	50 to 12.5	12.7
2 source vessels (2 airgun arrays per vessel)	50 to 25	21.5
	50 to 12.5	16.8

Side-by-side

	deblend + interpolate (jittered to regular (m))	recovery with FDCT [SNR (dB)]	recovery with NFDCT [SNR (dB)]
1 source vessel (2 airgun arrays)	50 to 25	14.2	17.6
	50 to 12.5	11.1	12.7
2 source vessels (2 airgun arrays per vessel)	50 to 25	19.7	21.5
	50 to 12.5	15.0	16.8

Summary

- Larger variability in shot-time seems desirable
- Increased problem with data irregularity as shot-time varies
- Irregular data seem more amicable for interpolation (wavenumber diversity, non-coherent aliasing, etc)
- Both source separation and trace interpolation can be treated (and work well) as sparse inversion problems
- Rather than dealing with them separately, do both together
 - sparsity transforms can be better leveraged
 - avoid accumulation of errors in separate processing steps
- Talk to your reg+interpolation specialists

Acknowledgements

- My colleagues
- Many helpful discussions with industry geophysicists

This work was in part financially supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant (22R81254) and the Collaborative Research and Development Grant DNOISE II (375142-08). This research was carried out as part of the SINBAD II project with support from the following organizations: BG Group, BGP, BP, CGG, Chevron, ConocoPhillips, ION, Petrobras, PGS, Total SA, WesternGeco, and Woodside.

