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SUMMARY

Seismic imaging via linearized inversion requires multiple it-
erations to minimize the least-squares misfit as a function of
the medium perturbation. Unfortunately, the cost for these it-
erations are prohibitive because each iteration requires many
wave-equation simulations, which without direct solvers require
an expensive separate solve for each source. To overcome this
problem, we use dimensionality-reduction to decrease the size
of seismic imaging problem by turning the large number of se-
quential shots into a much small number of simultaneous shots.
In our approach, we take advantage of sparsifying transforms
to remove source crosstalk resulting from randomly weighting
and stacking sequential shots into a few super shots. We also
take advantage of the fact that the convergence of large-scale
sparsity-promoting solvers can be improved significantly by
borrowing ideas from message passing, which are designed to
break correlation built up between the linear system and the
model iterate. In this way, we arrive at a formulation where we
run the sparsity-promoting solver for a relatively large number
of iterations. Aside from leading to a significant speed up, our
approach had the advantage of greatly reducing the memory
imprint and IO requirements. We demonstrate this feature by
solving a sparsity-promoting imaging problem with operators
of reverse-time migration, which is computationally infeasible
without the dimensionality reduction.

INTRODUCTION

Nowadays, industry tends to favor migration methods which
vary from ’time’ or ’depth’ to ’one-way wave-equation’ and to
’reverse time’ and so on. All these migration methods are aimed
at imaging subsurface reflectors, however, none of them provide
correct amplitude information. Least-squares migration has
been introduced to overcome this amplitude problem by invert-
ing the system iteratively while minimizing the least-squares as
a function of the medium perturbation (see e.g. Rickett, 2003;
Plessix and Mulder, 2004). As such, least-squares migration
provides us in principle with artifact-free true-amplitude im-
ages even in situations where the background velocity model
contains minor errors (Kühl and Sacchi, 2003). Because each
source requires a separate partial-differential equation (PDE)
solve, this leads to wave simulation costs that increase lin-
early with the number of sources. This requirement proves
to be prohibitive in practice where datasets contain hundreds-
of-thousands of sources or more and this explains the slow
adaptation of this technology.

To reduce these computational cost, we follow earlier ideas
on random source encoding (Morton and Ober, 1998; Romero
et al., 2000; Herrmann et al., 2009; Neelamani et al., 2010) to
turn the large ’overdetermined’ system of equations of the dis-
cretized linearized Born scattering operator into an ’underdeter-
mined’ system by dimensionality reduction. During this dimen-
sionality reduction, we randomly combining all sequential shots
into small subsets of simultaneous shots (Li and Herrmann,

2010; Krebs et al., 2009; Haber et al., 2010). We subsequently
use ideas from compressive sensing (CS, Candès et al., 2006;
Donoho, 2006; Mallat, 2009) to remove the source crosstalk
by solving a sparsity-promoting program (SPG`1, Berg and
Friedlander, 2008) that exploits curvelet-domain sparsity on the
model.

While this approach certainly leads to a significant reduction of
the problem size, which leads to a corresponding reduction in
the number of PDE solves required by each iteration, the con-
vergence of SPG`1 becomes a limiting factor especially when
targeting the removal of small source-interference that lie close
to the null-space of the forward modeling operator. To address
this challenging issue, we borrow ideas from approximate mes-
sage passing (AMP Donoho et al., 2009). Instead of adding
a message term, which depends on unrealizable assumptions
on the forward model, we draw new subsets of supershots after
solving each subproblem of SPG`1. Under certain conditions,
the selection of new supershots is statistically to approximate
message passing (Montanari, 2010). As a consequence, correla-
tions between the model iterate and forward model are removed,
which leads to a significant improvement of the convergence.

Our outline is as follows: First, we introduce how to apply di-
mensionality reduction to seismic imaging. Second, we discuss
efficient imaging with sparsity promotion, improvements by
message passing, and a practical adaptation of message passing
to sparsity-promoting imaging. We conclude by applying the
proposed method to a seismic imaging problem with well-log
derived velocity model.

THEORY

Dimensionality reduced least squares migration: Least-squares
migration involves inversion of the linearized (time-harmonic)
acoustic Born-scattering modeling operator and has the follow-
ing separable form:

minimize
δm

1
2K
‖δD−∇F [m0;Q]δm‖2

F

=
1

2K

K∑
i=1

‖δdi−∇F i[m0;qi]δm‖2
2. (1)

In this expression, ∇F [m0;Q] is the linear Born-scattering
modeling operator with background velocity model m0 for all
sources collected in the columns of Q, the matrix δD∈CN f NrNs

contains the observed wavefield with N f , Nr , and Ns the number
of angular frequencies, receiver, and source positions. The
vector δm ∈ RM is the unknown model perturbation, with M
the number of gridpoints. Since each angular frequency and
sequential source can be treated independently, index i = 1 · · ·K
represents each single experiment based on one frequency and
one shot.

Least-squares migration is challenging because each iteration
to solve Equation 1 typically requires 4K PDE solves: two for
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the action of F i and the other two for its adjoint. Thus, the in-
version costs grow linearly with the number of monochromatic
source experiments, multiplied by the number of matrix-vector
multiplies required by the solver. Consequently, iterative meth-
ods require multiple passes thought the whole data to evaluate
the action of the Born scattering operator and its adjoint.To re-
duce costs, we replace the sequential shots with a small number
of simultaneous shots (K′� K) supershots yielding

minimize
δm

1
2K′

K′∑
i=1

‖δDwi−∇F i[m0;Qwi]δm‖2
2

=
1
2
‖δD−∇F i[m0;Q]δm‖2

F , (2)

where {δD, Q} := {DW, QW} (Moghaddam and Herrmann,
2010; Haber et al., 2010; van Leeuwen et al., 2011). We obtain
the dimensionality reduction of Equation 1 by multiplying the
observed wavefield and sources from the right with a random
Gaussian tall matrix W = [w1, · · · ,wK′ ]. In that way, we can
easily see that the number of PDE solvers required for each
iteration of the solution of Equation 2 decreases by a factor
of K′/K(see also Herrmann et al., 2009, for details). While
random-amplitude source encoding and subsampling, allows
us to reduce the number of sources, the required source super-
position leads to source crosstalk, which we need to remove to
enhance the image quality.

Efficient imaging with sparsity promoting: To mitigate source-
crosstalk artifacts caused by the randomized subsampling, we
take advantage of compressive sensing where sparse N-long
vectors x can be recovered from incomplete measurements
b = Ax, where b ∈ Cn and A ∈ Cn×N is the sensing matrix
with n� N. According to CS (Candès et al., 2006; Donoho,
2006; Mallat, 2009), recovery is possible for certain matrices
A. Using this result, we argue that we can solve Equation 2
with the following sparsity-promoting program known as Basis
Pursuit (BP):

minimize
x

1
2
‖x‖1 s.t. δD = ∇F [m;Q]SHx. (3)

In this expression, SH is the inverse curvelet transform that
we use to represent the model perturbation—i.e., δm = SHx.
Following van den Berg and Friedlander (2008), we solve this
sparsity-promotion program with a root-finding method on the
Pareto curve. This approach corresponds to solving a series of
LASSO (Tibshirani, 1997) subproblems that read

minimize
x

1
2
‖δD−∇F [m;Q]SHx‖2

F s.t. ‖x‖1 ≤ τ (4)

and where τ is one-norm for constraint. See Figure 1, for
a typical solution in relation to the underlying Pareto curve.
While this framework leads to an efficient algorithm to solve
large-scale sparsity-promoting programs, the convergence of
the algorithm stalls, which leads to unsatisfactory results as
reported by Herrmann and Li (2011).

Improvement of the convergency by message passing: Each
sub-problem solved by SPG`1 involves relatively expensive
gradient updates, xt+1 = xt +AT (δD−Axt), with the sensing
matrix A = ∇F [m;Q]SH . These gradient updates are followed
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Figure 1: Series of LASSO subproblems with renewals for the
collections of supershots (adapted from Berg and Friedlander
(2008)).

by an orthogonal projection of the model iterate to `1-norm
ball of size τ (Berg and Friedlander, 2008). As observed by
Herrmann (2012), this procedure leads to a build up of cor-
relations between the sensing matrix and the model iterates.
These correlations are the result of misidentified coefficients in
the vector for the model iterate, which are difficult to remove.
To remove these correlations between the sensing matrix and
the model iterates, we follow the spirit of message passing by
drawing a new set of simultaneous sources after each LASSO
sub-problem of SPG`1 is solved. (See Figure 1. As reported
by Montanari (2010), and by Herrmann (2012) selection of a
new copy of the sensing matrix and data has the same effect as
including a message term. The advantage of this approach is
that is does not rely on the assumptions underlying AMP that
are very difficult to meet in our application. See Figure 1 and
Algorithm 1, which illustrates the principle of our proposed
algorithm.

Result: Estimate for the model x̃
x0 ←− 0 ; // initial model

k←− 0 ; // initial counter

{δD, Q} := {DW, QW} ; // random shots

while ‖x0− x̃‖2 ≥ ε do
k←− k+1; // increase counter

x̃←− x0; // update warm start

x0←− Solve(minimizex
1
2‖δD−

∇F [m;Q]SHx‖2
F s.t. ‖x‖1 ≤ τ); // solve the

subproblem

{δD, Q} := {DW, QW} ; // do redraws

end
Algorithm 1: sparsity promoting recovery with approximated
message passing

EXAMPLE

To test the performance of our algorithm in a realistic setting,
we use BG compass model (Figure 2(a)) as the true reference
model, which is constrained by well-log information. This
sedimentary model has two big unconformities and a sharp
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velocity ’kick-back’ under the first unconformity, which is
challenging for migration. The initial model (Figure 2(b)) for
the migration is generated by applying a low-pass filter on the
true model.

(a)

(b)

Figure 2: BG compass model. (a) True model. (b) Initial
model.

We use 10 random frequencies in our simulations selected from
the interval 20−50Hz with a source function given by a 30Hz
Ricker wavelet. We parametrize the velocity perturbation on a
409×1401 grid with a gridsize of 5m. We use the Helmholtz
solver to generate data from 350 source positions sampled at
an interval of 20m and 701 receivers sampled with an interval
of 10m. Since we want to focus on improvements in conver-
gence, we avoid issues related to the linearization by generating
data with the linearized Born scattering operator. We only use
three randomly selected simultaneous shots and we solve 50
subproblems both with and without selecting new independent
copies of the sensing matrix and data. In either case, the costs
are about 500 SPG`1 iterations. Therefore, the total computa-
tional cost of these two experiments is equivalent to solving
the imaging problem (cf. Equation 1) for all 350 sequential
shots with 3−−5 LSQR iterations. The result of this exer-
cise is summarized in figure 3 and clearly shows significant
improvements from including the message term. Not only is
the crosstalk removed more efficiently but the reflectors are
also better imaged, in particular at the deeper parts of the model
where recovery without redraws is not able to image the events.

CONCLUSIONS

In this abstract, we introduced an efficient algorithm to solve the
linearized image problem. The combination of dimensionality-
reduction, curvelet-domain sparsity-promotion, and message-
passing, via drawing new copies of the sensing matrix and data,
leads to a remarkable speedup of convergence and improved
image quality. The explanation for these improvements lies
mainly in our ability to prevent correlations to build up between
the sensing matrix and the model iterates. In this way, we are
able to work with very small subsets of simultaneous source
experiments while still being able to remove the source inter-
ferences. Our results are remarkable because we are able to get

very high quality images for least-squares imaging problems
that are too expensive to be solved using all data during each it-
eration. For other applications of message passing, we refer the
reader to other contributions by the authors these proceedings.
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(a)

(b)

(c)

Figure 3: Dimensionality-reduced sparsity-promoting imaging from random subsets of three simultaneous shots and ten frequencies.
We used the background velocity-model plotted in Figure 2(b) (a) True perturbation given by the difference between the true velocity
model and the smoothed initial model plotted in Figure 2(b). (b) Imaging result with ’messaging’. (c) The same but without
’messaging’.
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