Accelerated large-scale inversion with message passing

Felix J. Herrmann

thanks to Xiang Li

Seismic Laboratory for Imaging and Modeling the University of British Columbia

Drivers

Recent technology push calls for collection

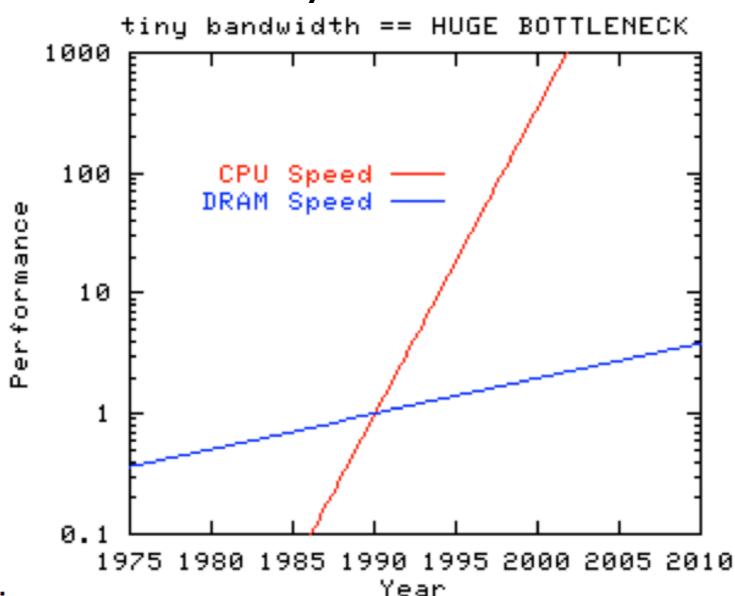
- high-quality broad-band data volumes (>100k channels)
- larger offsets & full azimuth

Exposes vulnerabilities in our ability to control

- acquisition costs / time / quality
- processing costs / time / quality

Drivers cont'd

Problems exacerbated by IO bottleneck:



Goals

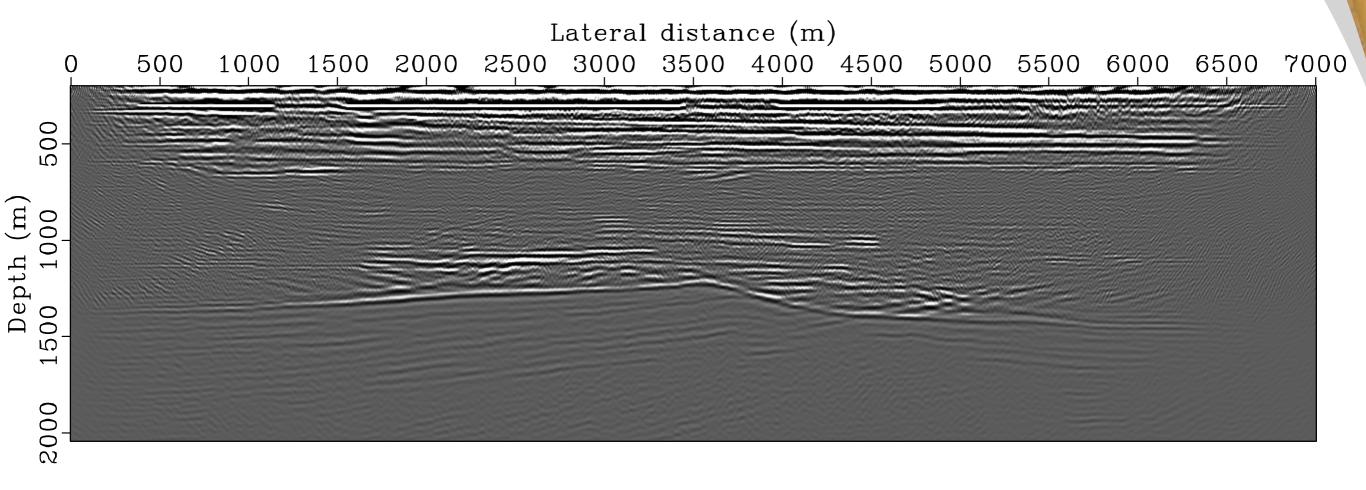
Replace a 'sluggish' inversion paradigm that

- relies on touching **all** data all the time by an agile optimization paradigm that works on
 - **small** randomized subsets of data iteratively

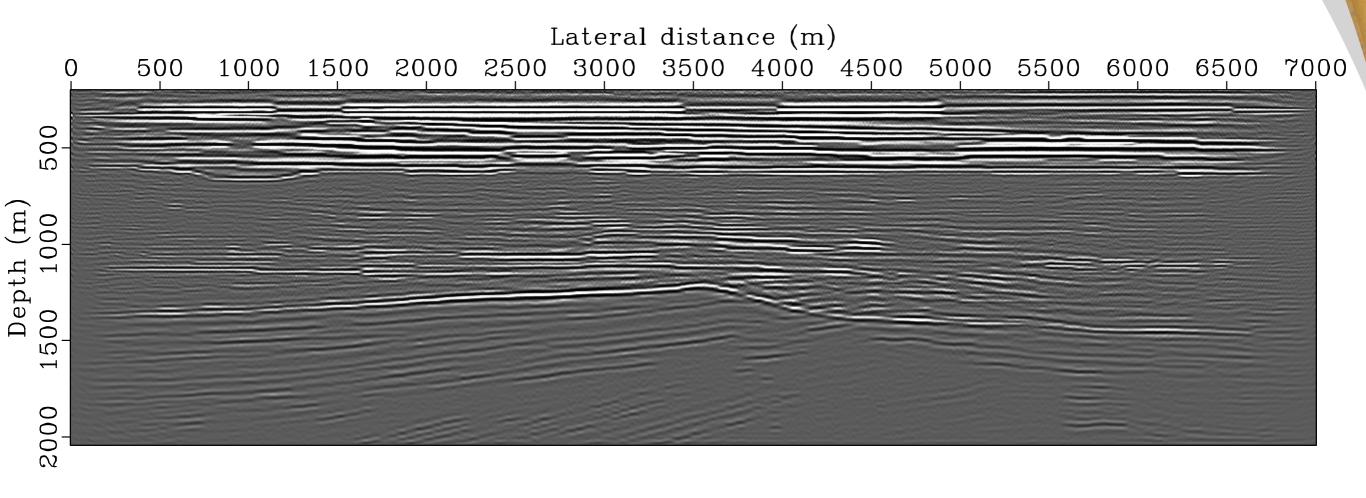
Confront "data explosion" by

- reducing acquisition costs
- removing IO & PDEs-solve bottlenecks

Imaging results [migration with "all" data]



Imaging results [linearized inversion with small subsets]



Key technologies

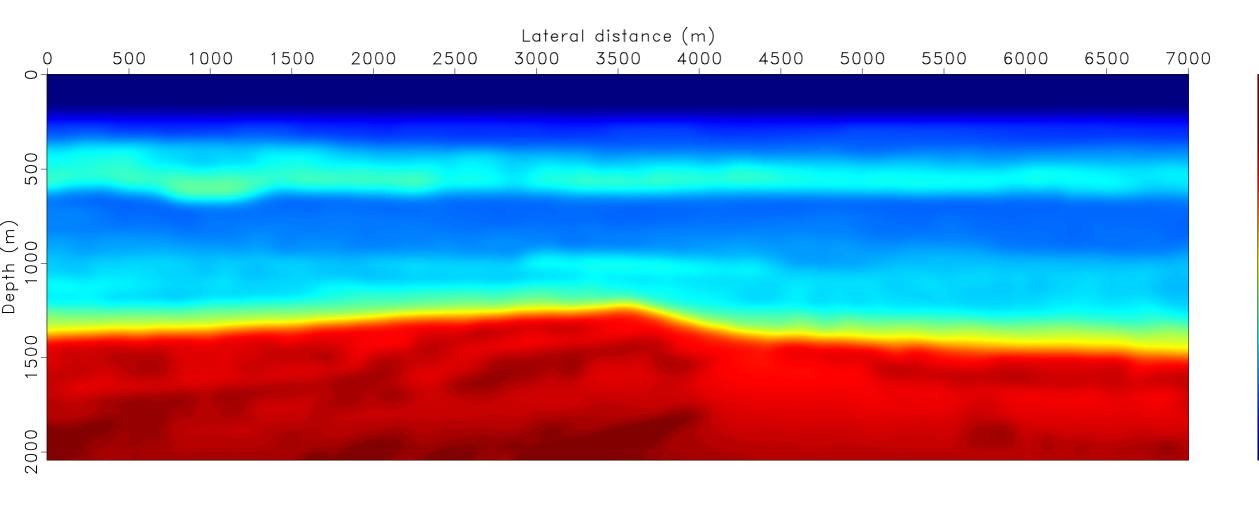
Fast imaging with Stochastic optimization / Compressive Sensing:

- subsets of simultaneous sources supershots generated by random amplitude-weighted superpositions
- random subsets of sequential sources

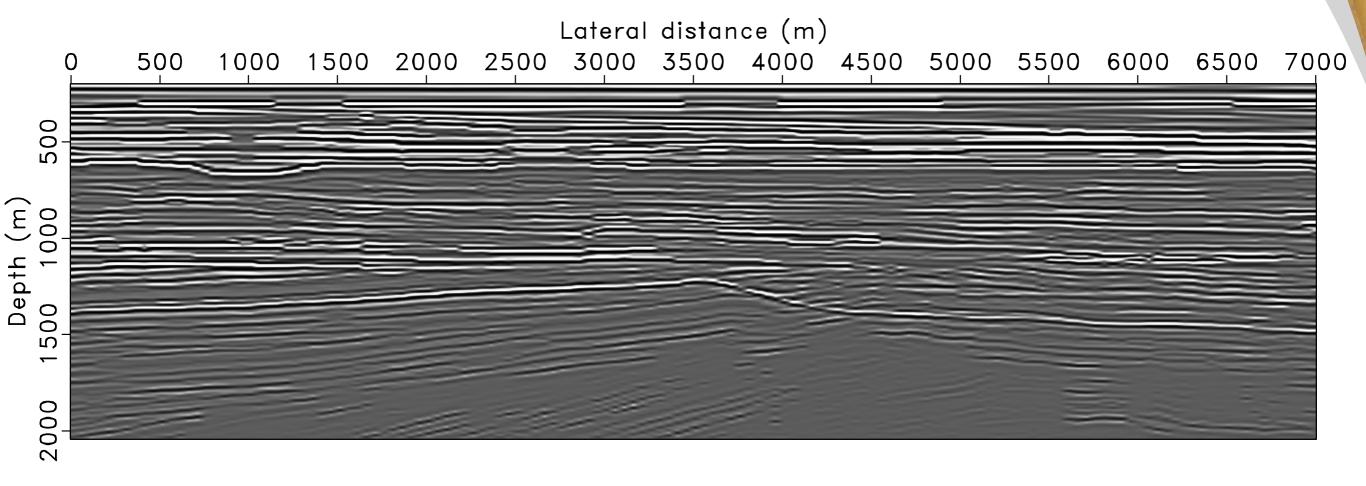
Imaging via large-scale curvelet-domain sparsity promoting convex optimization with cooling

Acceleration with approximate message passing

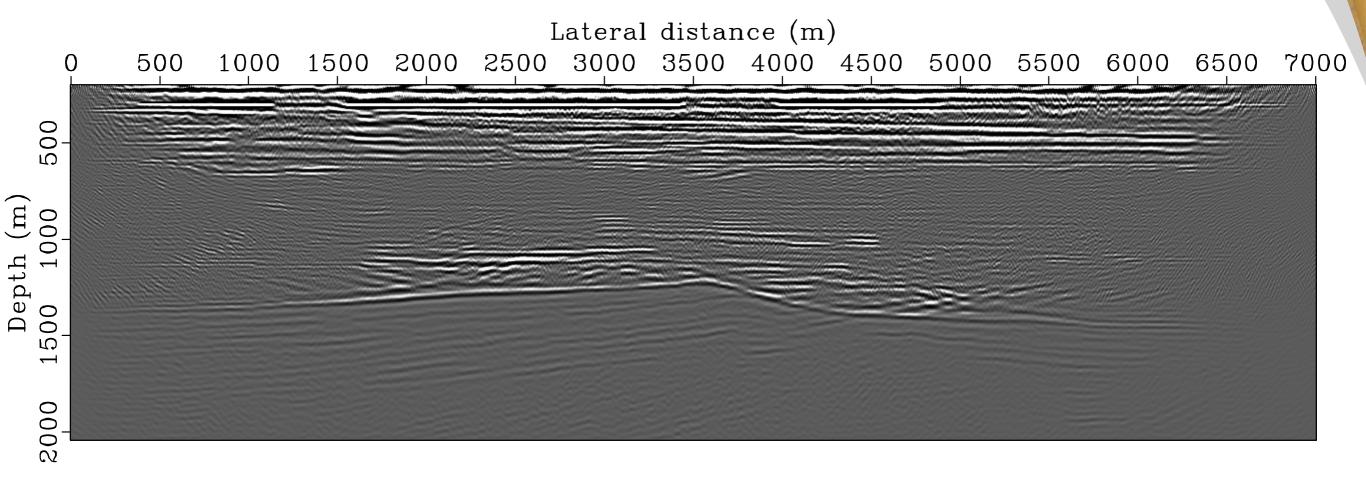
Imaging [background model]



Imaging [true perturbation]



Migration [single migration with "all" data]



Too expensive to invert with "all" data...

Fast imaging [via stochastic optimization]

Rerandomized sampling

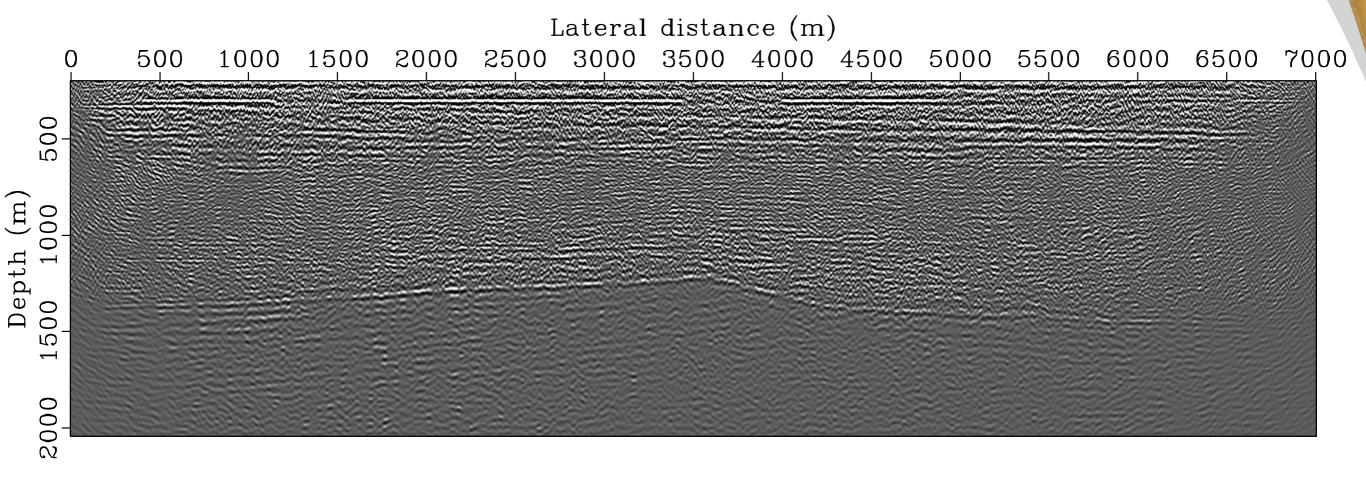
- Inear speed up by reducing # PDE solves
- increases convergence but may fail to converge

Exploits multi-experiment redundancy of seismic data volumes

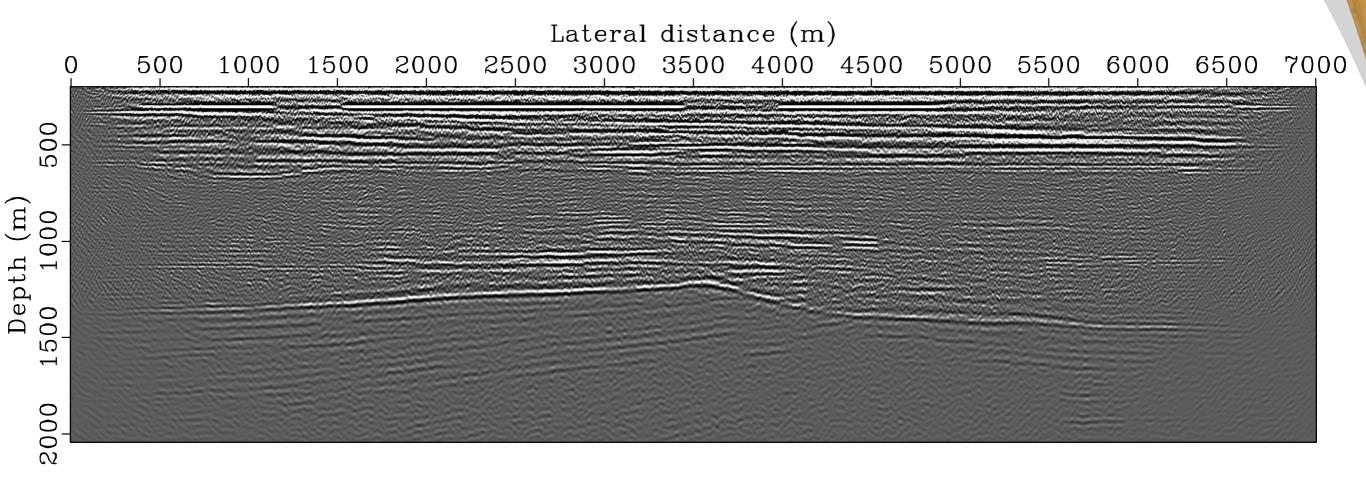
- regularly draw independent subsets of shots
- cancels crosstalk by rerandomization

Heuristic of current phase-encoding migration/FWI methods

Linearized inversion $[\ell_2]$ without rerandomization 3 super shots



Linearized inversion $[\ell_2]$ with rerandomization 3 super shots



Fast imaging [via compressive sensing]

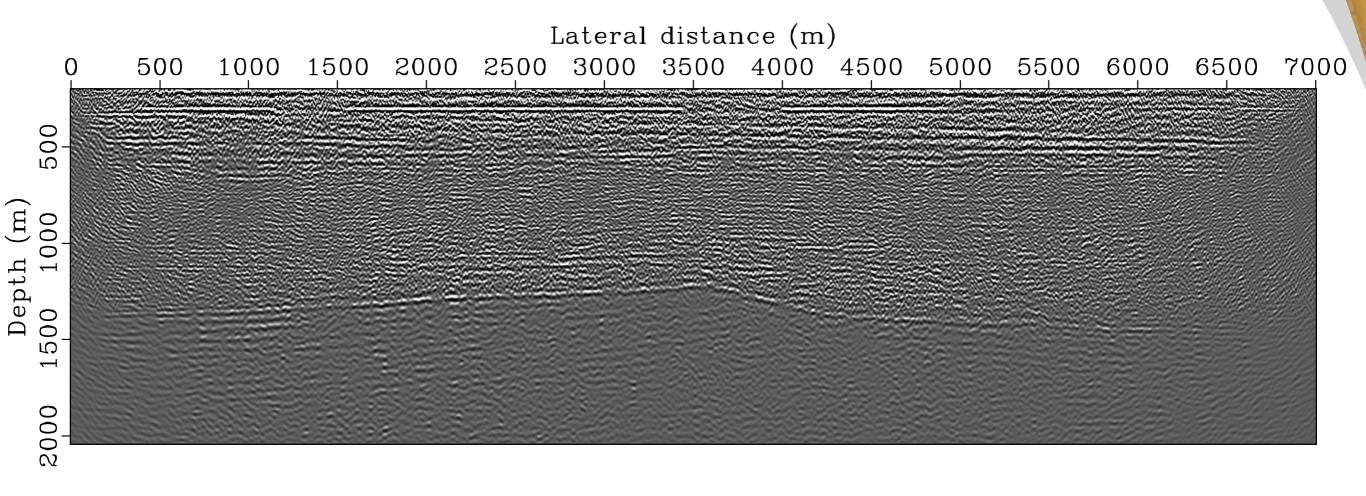
Incoherent randomized sampling

- Inear speed up by reducing # PDE solves
- coherent source crosstalk turns into non-sparse incoherent noise

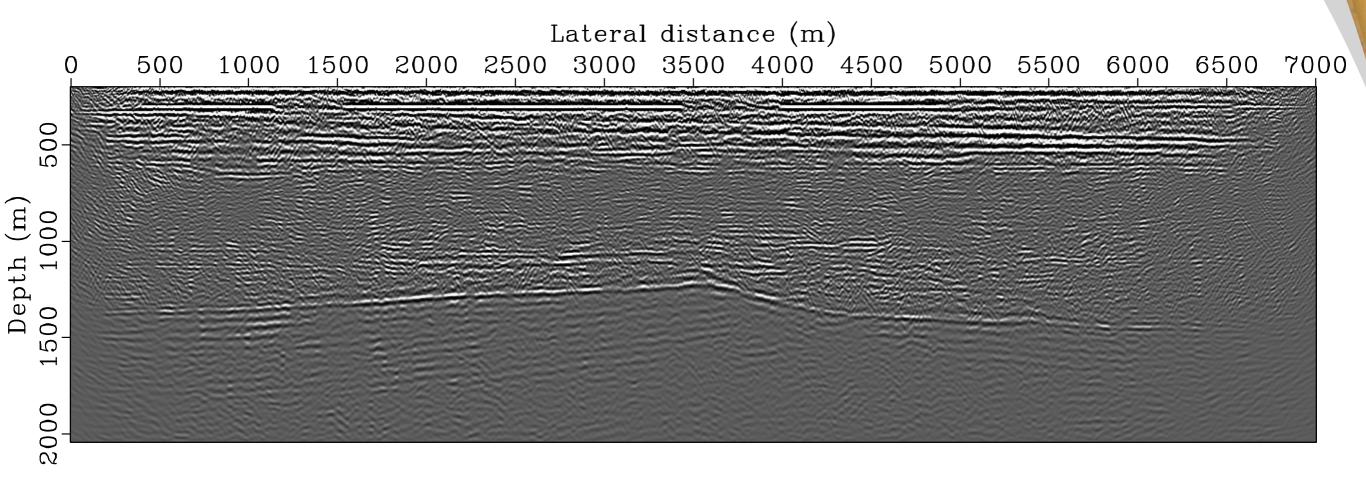
Exploits structure exhibited by migrated images

- leverages curvelet-domain sparsity promotion
- maps "noisy" crosstalk to coherent reflectors

Linearized inversion [ℓ_2 3 super shots]



Linearized inversion [ℓ_1 3 super shots]



Observations [reasonable PDE solve budget]

Rerandomization and curvelet-domain sparsity promotion:

- partly eliminate "noisy" crosstalk
- fail to remove "small" incoherent crosstalk

Can we somehow combine these two methods?

- continuation method for large-scale convex optimization
- use insights from approximate message passing

[Daubechies et. al, '04; Hennenfent et. al.,'08, Mallat, '09, Donoho et. al, '09]

[Montanari, '12]

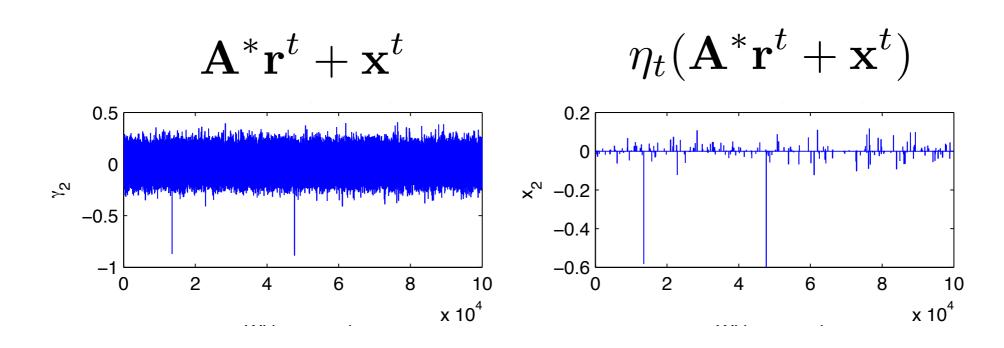
Convex optimization

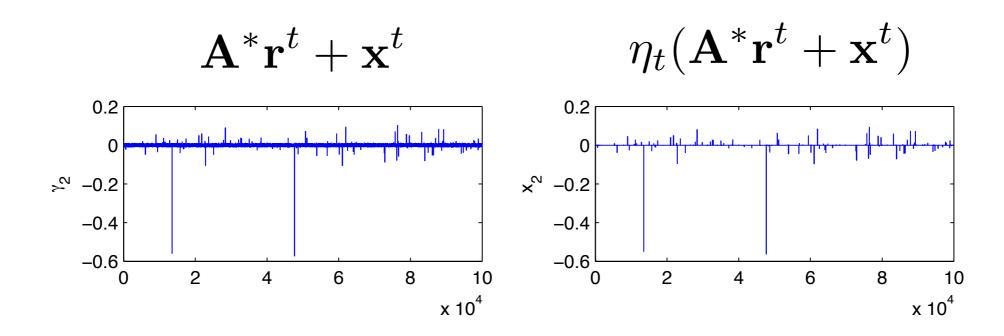
Involves iterations of the type

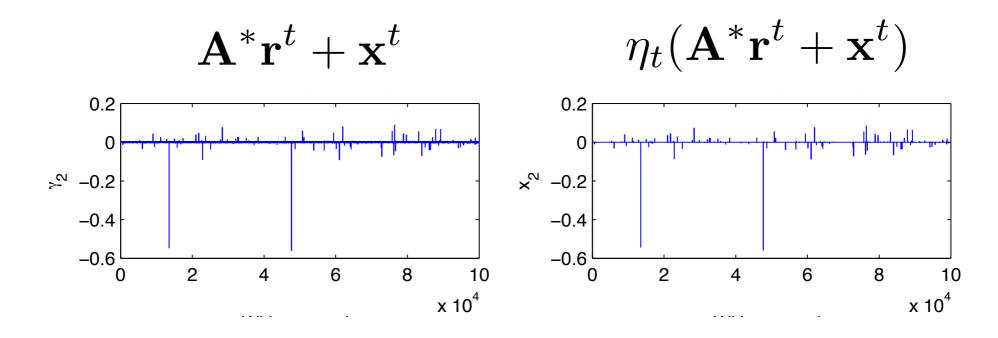
soft threshold
$$\mathbf{x}^{t+1} = \eta_t \left(\mathbf{A}^* \mathbf{r}^t + \mathbf{x}^t
ight)$$
 $\mathbf{r}^t = \mathbf{b} - \mathbf{A} \mathbf{x}^t$

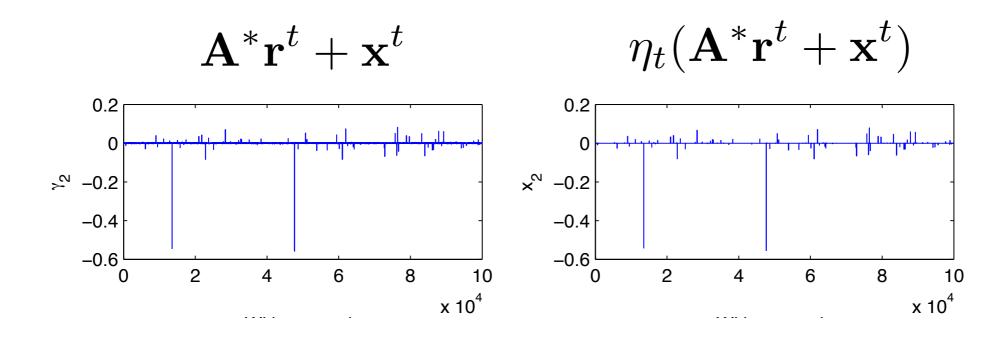
Corresponds to vanilla denoising if A is a Gaussian matrix.

But does the same hold for later (t>1) iterations...?









Problem

After first iteration the interferences become 'spiky' because of correlations between model iterate **x**^t & the matrix **A**

- assumption spiky vs Gaussian noise no longer holds
- renders soft thresholding less effective

Leads to stalling of sparsity-promoting algorithms...

Approximate message passing

Add a term to iterative soft thresholding, i.e.,

$$\mathbf{x}^{t+1} = \eta_t \left(\mathbf{A}^* \mathbf{r}^t + \mathbf{x}^t
ight)$$
 $\mathbf{r}^t = \mathbf{b} - \mathbf{A} \mathbf{x}^t + \frac{\|\mathbf{x}^{t+1}\|_0}{n} \mathbf{r}^{t-1}$ "message term"

Holds for

- normalized Gaussian matrices $\mathbf{A}_{ij} \in n^{-1/2}N(0,1)$
- large-scale limit and for specific thresholding strategy

Approximate message passing

Statistically equivalent to

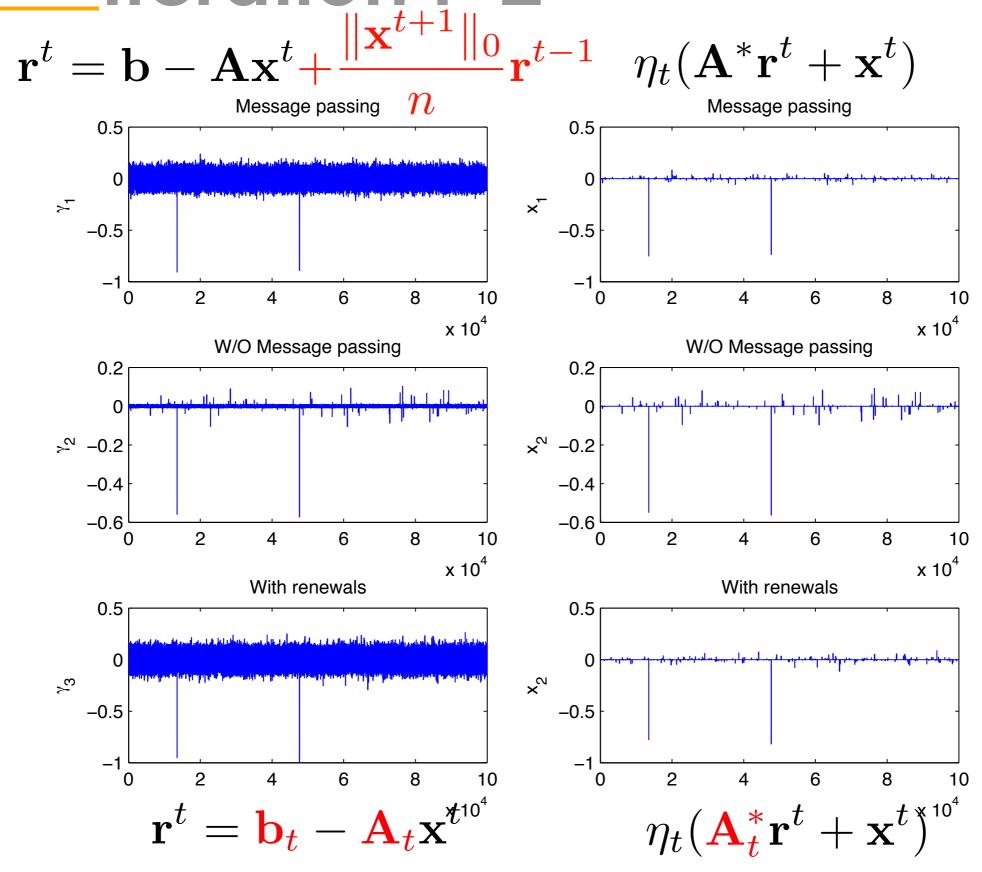
$$\mathbf{x}^{t+1} = \eta_t \left(\mathbf{A}_t^* \mathbf{r}^t + \mathbf{x}^t \right)$$
$$\mathbf{r}^t = \mathbf{b}_t - \mathbf{A}_t \mathbf{x}^t$$

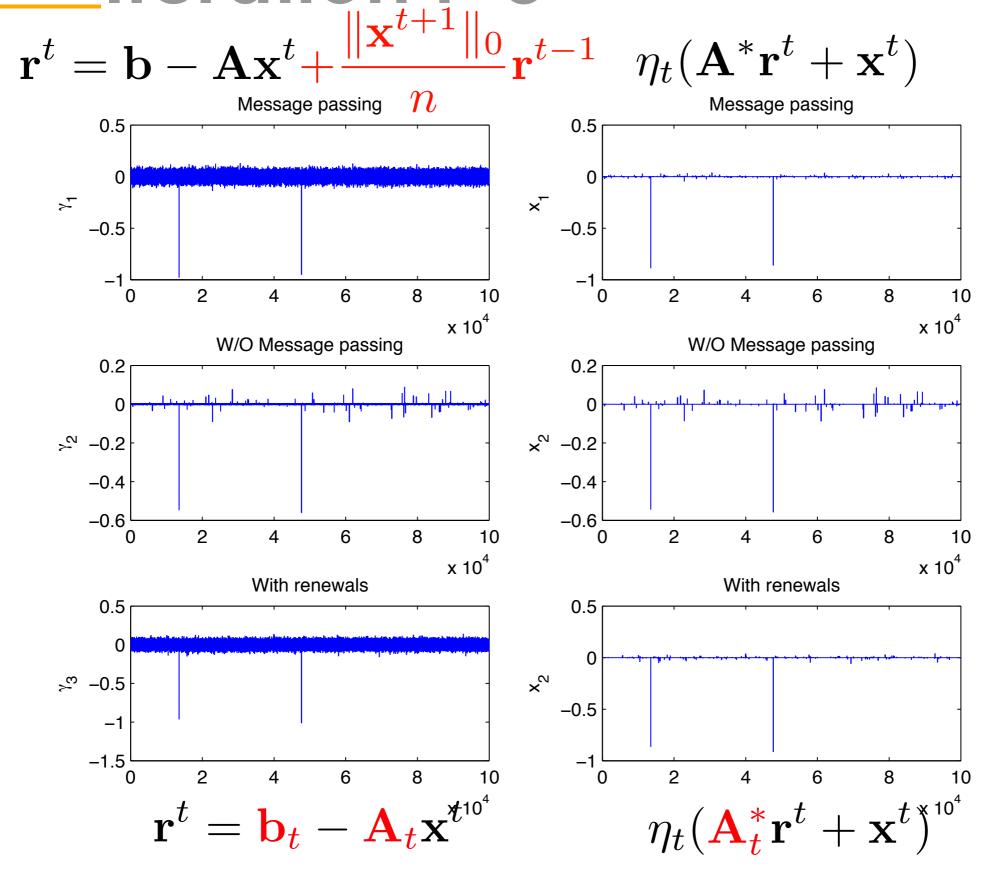
by drawing new independent pairs $\{\mathbf{b}_t, \mathbf{A}_t\}$ for each iteration

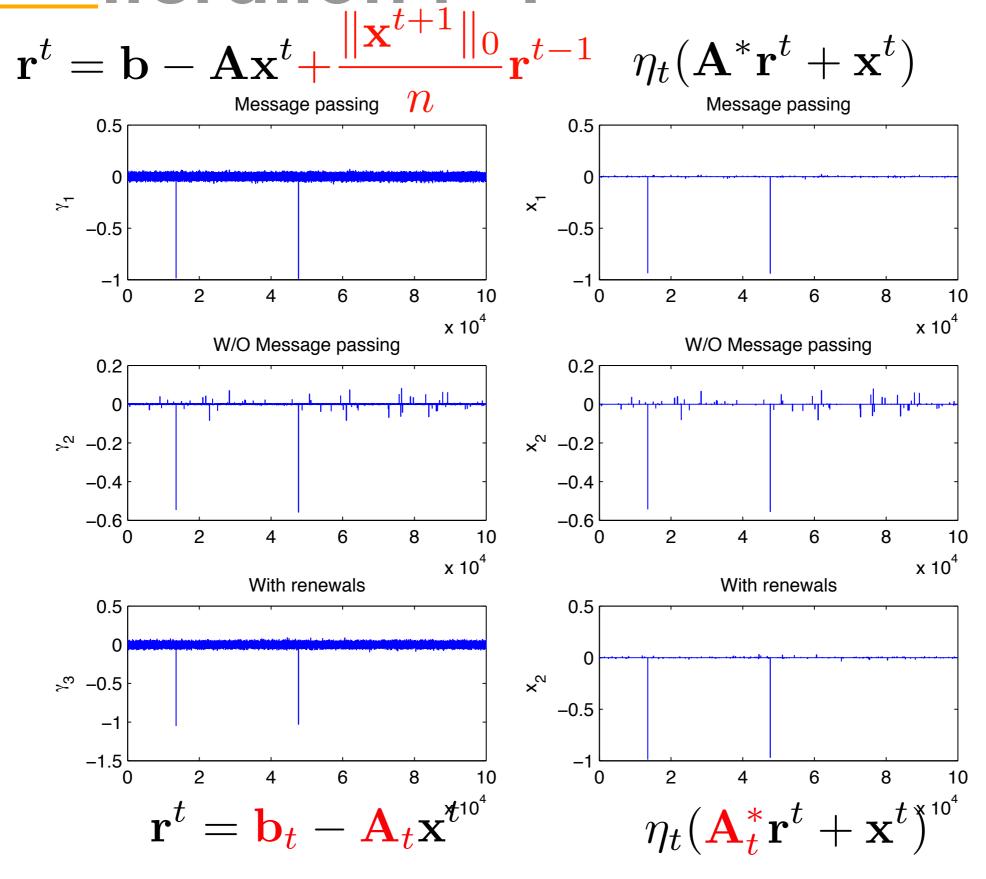
Changes the story completely

- breaks correlation buildup
- faster convergence

$$\mathbf{r}^t = \mathbf{b} - \mathbf{A} \mathbf{x}^t + \frac{\|\mathbf{x}^{t+1}\|_0}{\|\mathbf{r}^{t+1}\|_0} \mathbf{r}^{t-1}$$
 $\eta_t (\mathbf{A}^* \mathbf{r}^t + \mathbf{x}^t)$ Message passing $\eta_t = 0.5$ Message passing $\eta_t = 0.5$ Message passing $\eta_t = 0.5$ Message passing $\eta_t = 0.6$ Messa





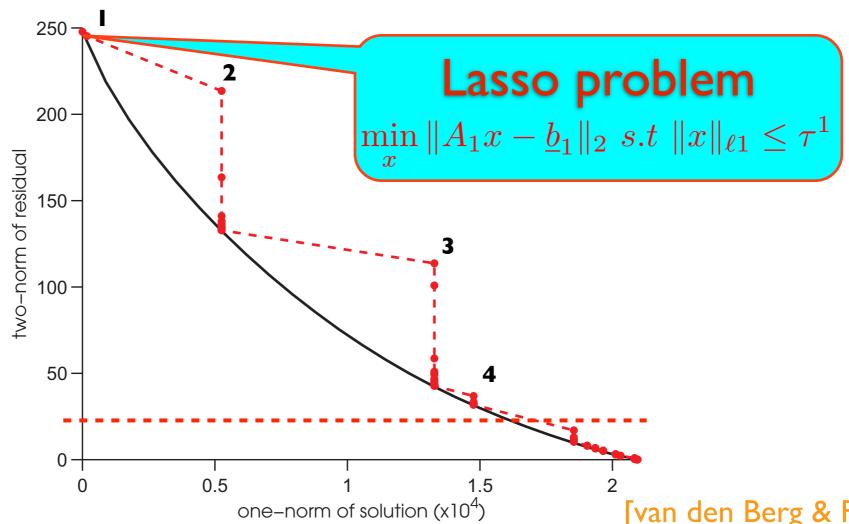


Supercooling

Break correlations between the model iterate and matrix **A** by rerandomization

- draw new independent $\{\mathbf{b}_t, \mathbf{A}_t\}$ after each subproblem is solved
- brings in "extra" information without growing the system
- minimal extra computational & memory cost

spectral-projected gradients

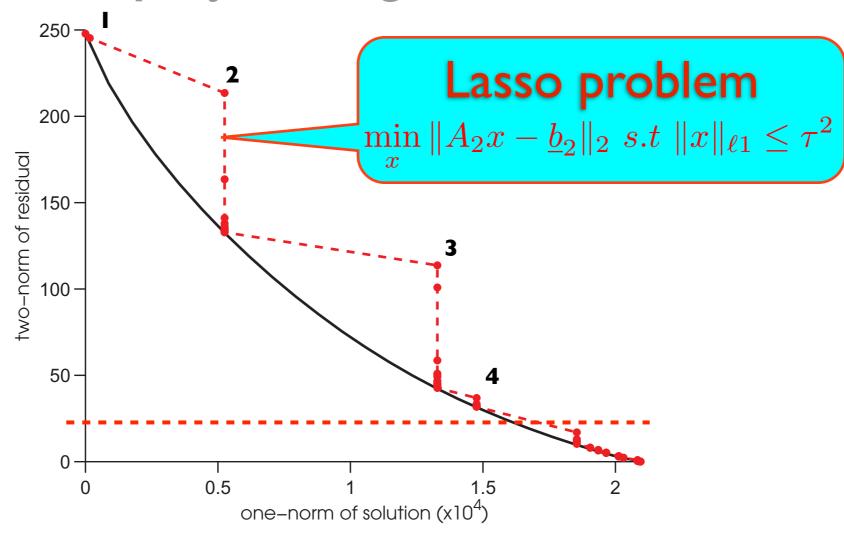


[van den Berg & Friedlander, '08]

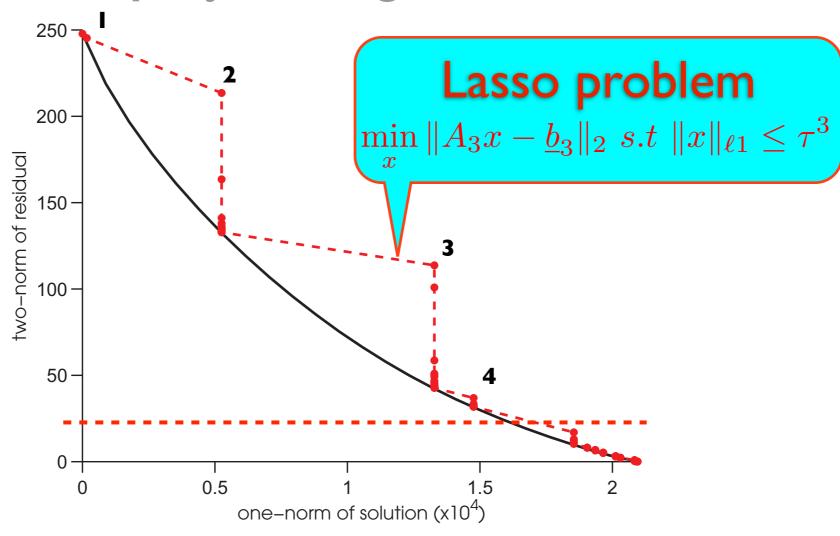
[Hennefent et. al., '08]

[Lin & FJH, '09-]

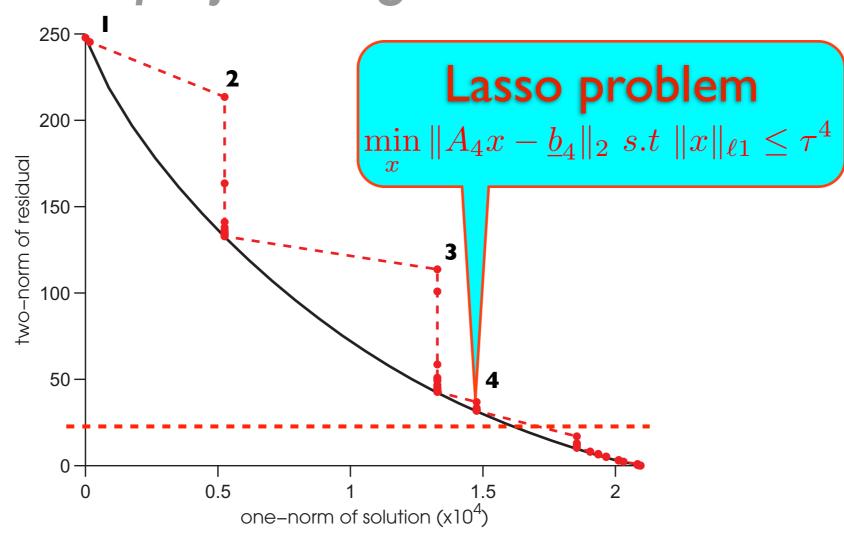
spectral-projected gradients



spectral-projected gradients



spectral-projected gradients



Supercooled spectral-projected gradients

Algorithm 1: Modified SPG ℓ_1 with message passing.

```
Result: Estimate for the model \mathbf{x}^{t+1}

1 \mathbf{x}^0, \widetilde{\mathbf{x}} \longleftarrow \mathbf{0} and t, \tau^0 \longleftarrow 0;

2 while t \leq T do

3 | \mathbf{A} \longleftarrow \mathbf{A} \sim P(\mathbf{A});

4 | \mathbf{b} \longleftarrow \mathbf{A}\mathbf{x};

5 | \mathbf{x}^{t+1} \longleftarrow \operatorname{spgll}(\mathbf{A}, \mathbf{b}, \tau^t, \sigma = 0, \mathbf{x}^t);

6 | \tau^t \longleftarrow ||\mathbf{x}^{t+1}||_1;

7 | t \longleftarrow t + \Delta T;

8 end

// Initialize

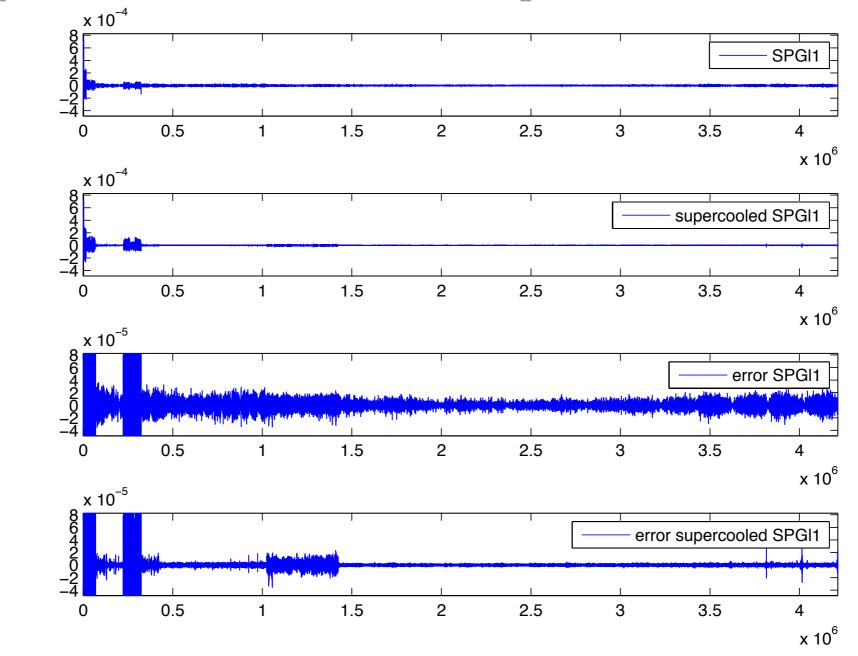
// Collect new data

// Reach Pareto

// New initial \tau value

// Add # of iterations of spgl1
```

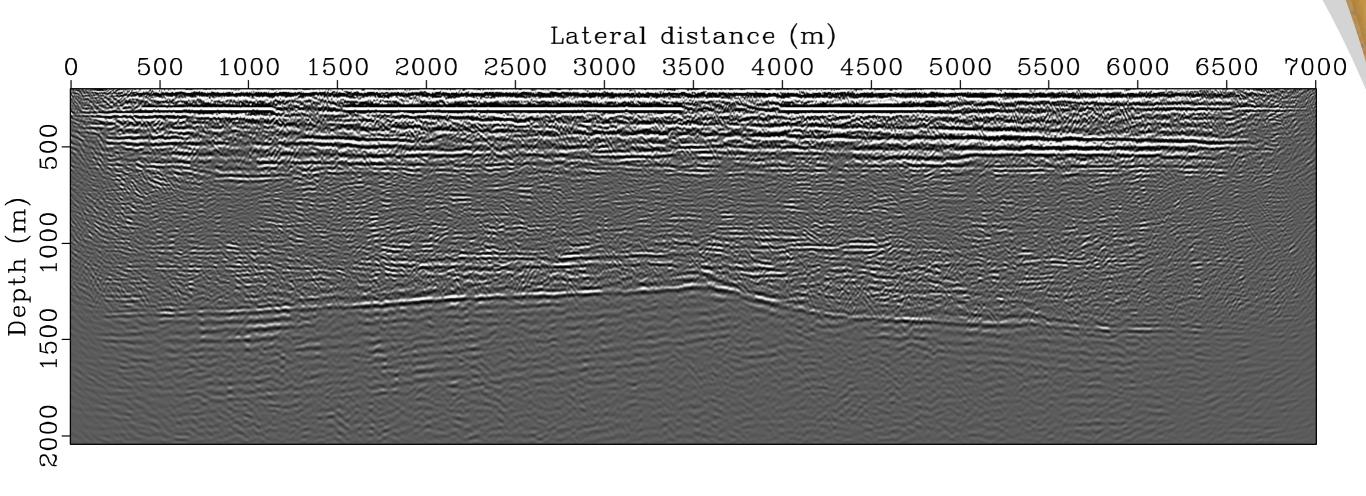

Linearized inversion [estimated coefficients]



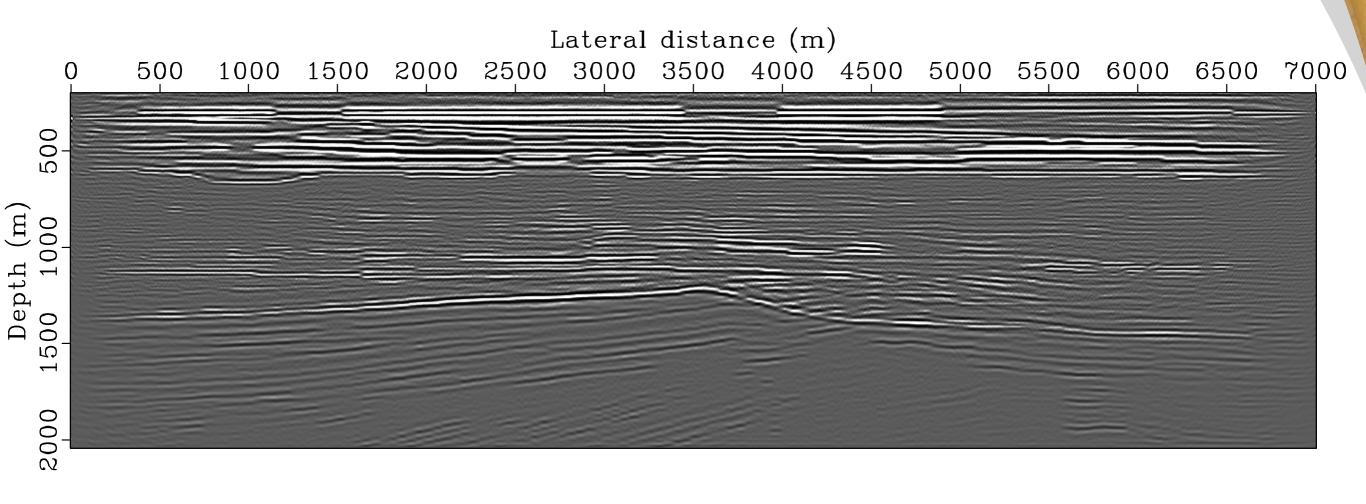
10 X

10 X

Linearized inversion $[\ell_1]$ without rerandomization 3 super shots]

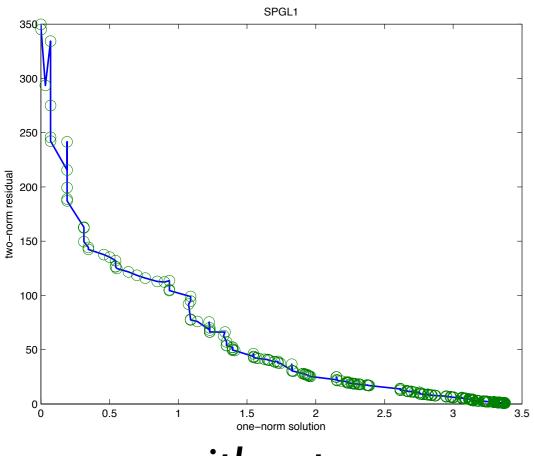


Linearized inversion $[\ell_1]$ with rerandomization 3 super shots

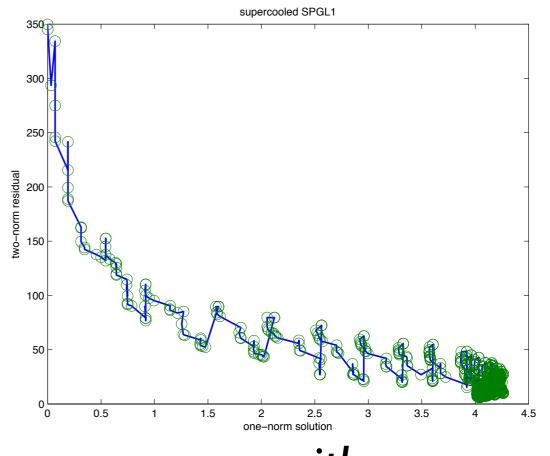


Linearized inversion

[solution paths ℓ_1]

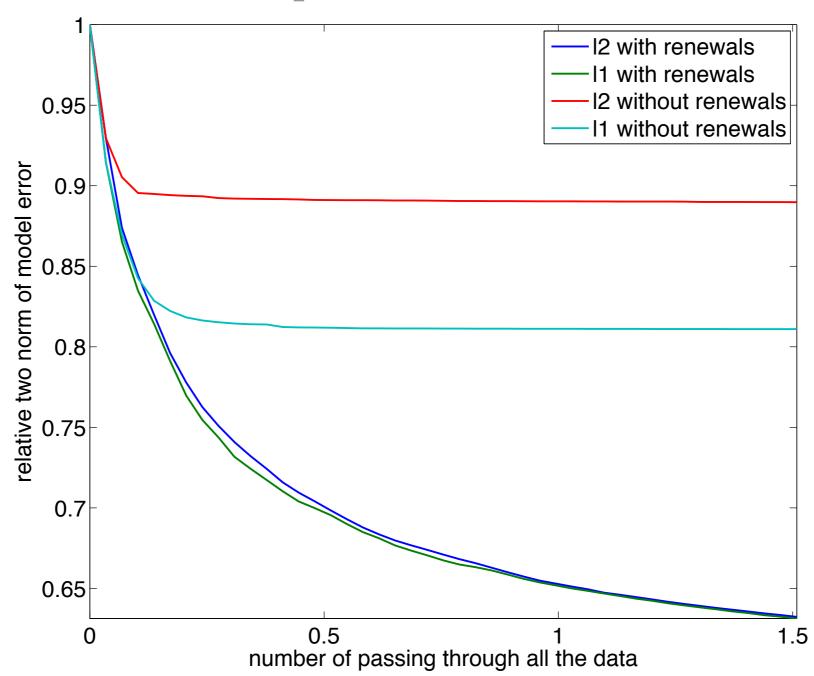


without rerandomization

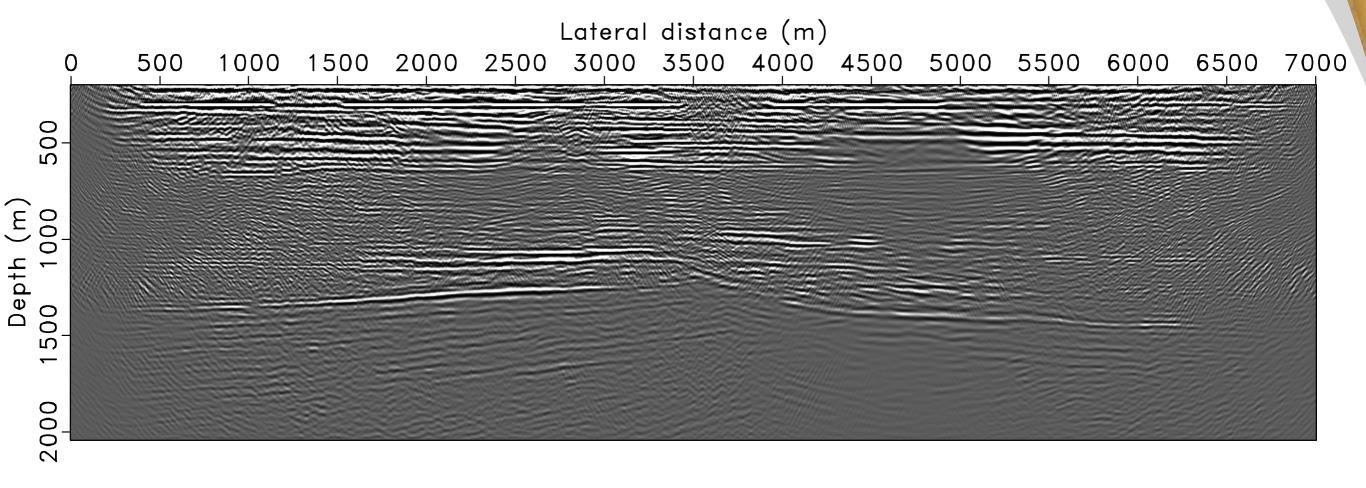


with rerandomization

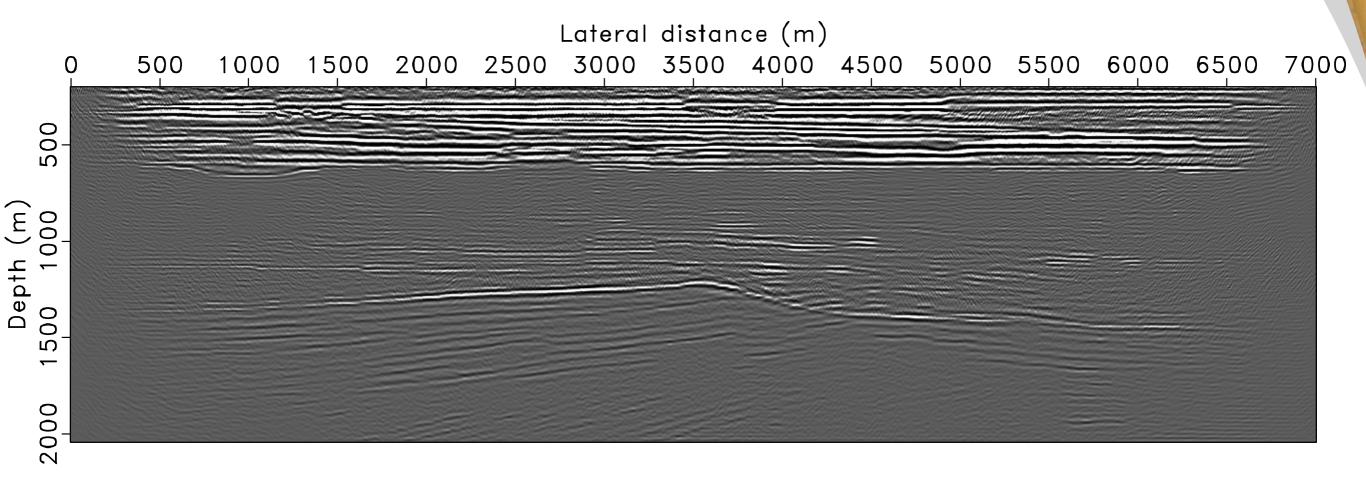
Linearized inversion [model errors]



Marine linearized inversion [ℓ_1 without rerandomization 17 shots]



Marine linearized inversion [ℓ_1 with rerandomization 17 shots]



Conclusions

Message passing improves image quality

computationally feasible one-norm regularization

Message passing via rerandomization

> small system size with small IO and memory imprints

Possibility to exploit new computer architectures that employ model space parallelism to speed up wavefield simulations...

Acknowledgments

We would like to thank Charles Jones from BG for providing us with the BG Compass model. This work was in part financially supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant (22R81254) and the Collaborative Research and Development Grant DNOISE II (375142-08).

This research was carried out as part of the SINBAD II project with support from the following organizations: BG Group, BP, BGP, Chevron, ConocoPhillips, Petrobras, PGS, Total SA, and WesternGeco.

Thank you

slim.eos.ubc.ca