SEG 2011 SAN ANTONIO

# Sparsity-promoting recovery from simultaneous data: a compressive sensing approach

Haneet Wason\*, Tim T. Y. Lin, and Felix J. Herrmann September 19, 2011



University of British Columbia



### Conventional recovery

SNR = 5.04 dB



## Sparsity-promoting recovery

SNR = 9.52 dB













- Opportunity to rethink Marine acquisition
- Concentrate on simultaneous sourcing
- Marine acquisition with ocean-bottom nodes

#### Outline

- Compressed sensing (CS) overview
  - design
  - recovery
- Design of simultaneous marine acquisition
- Experimental results of sparsity-promoting processing

#### Problem statement

Solve an *underdetermined* system of *linear* equations:

data (measurements /observations) 
$$\mathbf{b} \in \mathbb{C}^n \qquad \mathbf{b} \qquad \mathbf{A} \qquad \mathbf{A} \in \mathbb{C}^{n \times P}$$
 
$$\mathbf{x_0} \longleftarrow \text{unknown} \qquad \mathbf{x_0} \in \mathbb{C}^P$$

### Compressed sensing

- acquisition paradigm for sparse signals
- in some transform domain



### Compressed sensing

- acquisition paradigm for sparse signals
- in some transform domain









 $\mathbf{b} = egin{array}{ccccc} ext{Simultaneous} & ext{measurement matrix} & ext{} & ext{}$ 







### Coarse sampling schemes



few significant coefficients

3-fold under-sampling



significant coefficients detected

X

ambiguity



#### Mutual coherence

- measures the orthogonality of all columns of A
- equal to the maximum off-diagonal element of the Gram matrix
  - → controlled by compressive sensing via a combination of
    - randomization with
    - spreading of sampling vectors in the sparsifying domain

### Restricted isometry property

- lacktriangle indicates whether every group of k columns of  ${f A}$  are nearly orthogonal
- restricted isometry constant  $0 < \delta_k < 1$  for which

$$(1 - \delta_k) \|\mathbf{x}\|_2^2 \le \|\mathbf{A}\mathbf{x}\|_2^2 \le (1 + \delta_k) \|\mathbf{x}\|_2^2$$

### Sparse recovery

Solve the convex optimization problem (one-norm minimization):

$$ilde{\mathbf{x}} = \arg\min_{\mathbf{x}} \|\mathbf{x}\|_1$$
 subject to  $\mathbf{A}\mathbf{x} = \mathbf{b}$  data-consistent amplitude recovery

Sparsity-promoting solver:  $\mathbf{SPG}\ell_1$ 

[van den Berg and Friedlander, '08]

Recover single-source prestack data volume:  $\tilde{\mathbf{d}} = \mathbf{S^H}\tilde{\mathbf{x}}$ 

#### Outline

- Compressed sensing (CS) overview
  - design
  - recovery
- Design of simultaneous marine acquisition
- Experimental results of sparsity-promoting processing

### Simultaneous acquisition matrix

For a seismic line with  $N_s$  sources,  $N_r$  receivers, and  $N_t$  time samples, the sampling matrix is







#### Sequential vs. simultaneous sources

#### Time (s) Source position (m)

#### Sampling scheme: Random dithering



Sequential acquisition

Simultaneous acquisition

#### Sequential vs. simultaneous sources

# Sampling scheme: Random dithering



Conventional survey time:  $t = N_s \times N_t$ 

Sequential acquisition



Theoretical survey time:

$$t = n_{st} \ll n_s \times N_t$$

Simultaneous acquisition

#### Sampling scheme: Random dithering



#### Sampling scheme: Random dithering



#### Sampling scheme: Random time-shifting



#### Sampling scheme: Random time-shifting



### Sampling scheme: Random time-shifting



#### Sampling scheme: Constant time-shifting



#### Sampling scheme: Constant time-shifting



#### Sampling scheme: Constant time-shifting



#### Outline

- Compressed sensing (CS) overview
  - design
  - recovery
- Design of simultaneous marine acquisition
- Experimental results of sparsity-promoting processing

### **Experimental setup**

- Three sampling schemes:
  - Random dithering
  - Random time-shifting
  - Constant time-shifting
- Fully sampled sequential data (a seismic line from the Gulf of Suez) with  $N_{\rm s}=128$  sources,  $N_{\rm r}=128$  receivers, and  $N_{\rm t}=512$  time samples
- Subsampling ratio,  $\gamma = 0.5$
- ▶ Recover prestack data from simultaneous data
  - $\ell_1$  minimization
  - sparsifying transform: 3-D curvelets
- ▶ All sources see the same receivers
  - marine acquisition with ocean-bottom nodes

### Algorithm



### Curvelets







### Detect the wavefronts



# Original data (Sequential acquisition)



## Sparsity-promoting recovery: Random dithering SNR = 10.5 dB



#### Conventional recovery: Random time-shifting SNR = 5.04 dB



## Sparsity-promoting recovery: Random time-shifting SNR = 9.52 dB



## Sparsity-promoting recovery: Constant time-shifting SNR = 4.80 dB





### Conclusions

Simultaneous acquisition is a linear subsampling system

#### Critical for reconstruction quality:

- design of source subsampling schemes (i.e., acquisition scenarios)
- appropriate sparsifying transform
- sparsity-promoting solver



### Future plans

- Extensions to simultaneous acquisition frameworks for towed streamer surveys
- Use different transforms for sparsitypromoting processing

### References

van den Berg, E., and Friedlander, M.P., 2008, Probing the Pareto frontier for basis pursuit solutions, SIAM Journal on Scientific Computing, 31, 890-912.

Bruckstein, A. M., D. L. Donoho, and M. Elad, 2009, From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images: SIAM Review, 51, 34-81.

Candès, E., J. Romberg, and T. Tao, 2006, Stable signal recovery from incomplete and inaccurate measurements: Comm. Pure Appl. Math., 59, 1207–1223.

Candès, E. J., and L. Demanet, 2005, The curvelet representation of wave propagators is optimally sparse: Comm. Pure Appl. Math, 58, 1472–1528.

Candès, E. J., L. Demanet, D. L. Donoho, and L. Ying, 2006a, Fast discrete curvelet transforms: *Multiscale Modeling and Simulation*, 5, 861–899.

**Donoho, D. L., 2006**, Compressed sensing: *IEEE Trans. Inform. Theory, 52, 1289–1306*.

**Donoho, P., R. Ergas, and R. Polzer, 1999**, Development of seismic data compression methods for reliable, low-noise performance: *SEG International Exposition and 69th Annual Meeting, 1903–1906*.

### References

Herrmann, F. J., P. P. Moghaddam, and C. C. Stolk, 2008, Sparsity- and continuity-promoting seismic imaging with curvelet frames: *Journal of Applied and Computational Harmonic Analysis*, 24, 150–173. (doi:10.1016/j.acha.2007.06.007).

Herrmann, F. J., U. Boeniger, and D. J. Verschuur, 2007, Non-linear primary-multiple separation with directional curvelet frames: *Geophysical Journal International*, 170, 781–799.

Herrmann, F. J., Y. A. Erlangga, and T. Lin, 2009, Compressive simultaneous full-waveform simulation: *Geophysics*, 74, A35.

**Mallat, S. G., 2009**, A Wavelet Tour of Signal Processing: the Sparse Way: *Academic Press*.

Mansour, H., Haneet Wason, Tim T. Y. Lin, and Felix J. Herrmann, 2011, Simultaneous-source marine acquisition with compressive sampling matrices, *Technical Report, University of British Columbia*.

**Romberg, J., 2009**, Compressive sensing by random convolution: *SIAM Journal on Imaging Sciences, 2, 1098–1128*.

**Smith, H. F., 1998**, A Hardy space for Fourier integral operators: *J. Geom. Anal., 8, 629–653*.



## Acknowledgements

E. J. Candès, L. Demanet, D. L. Donoho, and L. Ying for CurveLab(<u>www.curvelet.org</u>)

E. van den Berg and M. Friedlander for SPGl1 (www.cs.ubc.ca/labs/scl/spgl1)





This work was in part financially supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant (22R81254) and the Collaborative Research and Development Grant DNOISE II (375142-08). This research was carried out as part of the SINBAD II project with support from the following organizations: BG Group, BP, Chevron, ConocoPhillips, Petrobras, PGP, PGS, Total SA, and WesternGeco.



# Thank you!

slim.eos.ubc.ca