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Sparsity-promoting recovery from simultaneous
data: a compressive sensing approach




Motivation

Conventional recovery

SNR =5.04 dB

2000
Receiver position (m) Shot position (m)




Motivation

1600

Sparsity-promoting
recovery

SNR =9.52 dB

2000 0 2000
Receiver position (m) Shot position (m)




Motivation

X Conventional recovery
SNR=5.04 dB

=

2000 0 2000
Receiver position (m) Shot position (m)

%‘Sparsity-promoting recovery
SNR=9.52 dB

1600

0 2000 0 2000
Receiver position (m) Shot position (m)




» Opportunity to rethink Marine acquisition

» Concentrate on simultaneous sourcing

» Marine acquisition with ocean-bottom
nodes




Compressed sensing (CS) overview

- design
- recovery

Design of simultaneous marine acquisition

Experimental results of sparsity-promoting
processing




Problem statement

Solve an underdetermined system of linear equations:
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Compressed sensing

» acquisition paradigm for sparse signals
» In some transform domain
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Compressed sensing

» acquisition paradigm for sparse signals
» In some transform domain
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Bigger picture

20.0

1000 2000 3000
Receiver position (m)

b d

_ A S50 100
series of . .
sequential shots Receiver position (#)

N\
RIS
-’
"
Q2
o
=
O
]
o
€
=
o
-—
C
o
-
O
o
]
©
—f—
o
-




Bigger picture

Simultaneous
measurement matrix
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Bigger picture

Simultaneous
measurement matrix
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Coarse sampling schemes
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Mutual coherence

» measures the orthogonality of all columns of A

» equal to the maximum off-diagonal element of the Gram matrix
= controlled by compressive sensing via a combination of
- randomization with

- spreading of sampling vectors in the sparsifying domain




Resiricted isometry property

» indicates whether every group of £ columns of A
are nearly orthogonal

» restricted isometry constant () < ¢, < 1 for which

(1= 0r)lIx[lz < [|AX([Z < (1 + dx)|x|3




Sparse recovery

Solve the convex optimization problem (one-norm
minimization);

X = argmin ||x||; subject to Ax=Db
X

—— \——
data-consistent

sparsity amplitude recovery

Sparsity-promoting solver: SPG/4

~
~

Recover single-source prestack data volume: d = SHx




Outline

» Design of simultaneous marine acquisition



Simultaneous acquisition matrix

For a seismic line with NV, sources, [V, receivers,
and N; time samples, the sampling matrix is
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Bigger picture
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Bigger picture

“Compressive sampling
matrix”




Sequential vs. simultaneous sources

Sampling scheme:
Random dithering
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Sequential vs. simultaneous sources
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Sequential acquisition

Sampling scheme:
Random dithering
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Theoretical survey time:
t = ng < ng X Ng
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Sampling scheme: Random dithering
RM

S
RN )

\ |

50 100 150 200 250 300 850 400 450 500
NNy

Total sequential time samples (#)

series of
sequential shots

100

Receiver position (#)




Sampling scheme: Random dithering
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Sampling scheme: Random time-shifting
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Sampling scheme: Random time-shifting
RM
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Sampling scheme: Random time-shifting

20.0

1000 2000 3000
Receiver position (m)




ing

-shift

Ime

et
-
-
O
o
(7]
-
O
O

Sampling scheme

Source Position (m)




Sampling scheme: Constant time-shifting
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Sampling scheme: Constant time-shifting
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Outline

» Experimental results of sparsity-promoting
processing



Experimental setup

» Three sampling schemes:

- Random dithering
- Random time-shifting
- Constant time-shifting

Fully sampled sequential data (a seismic line from the Gulf of Suez)
with N, = 128 sources, N, = 128 receivers,and N; = 512 time
samples

Subsampling ratio, v = 0.9
Recover prestack data from simultaneous data
- /1 minimization

- sparsifying transform: 3-D curvelets

All sources see the same receivers

- marine acquisition with ocean-bottom nodes




Algorithm

Fully sampled sequential data

)

Restricted simultaneous-acquisition
sampling matrix

|

Sparsifying transform : Curvelet

|

Compressive sampling matrix

|

Compressively sampled measurements

|

Recover sparsest set of curvelet coefficients

|

Sequential data recovery




Curvelets




Detect the wavefronts

Significant
curvelet coefficient

Curvelet
coefficient~0




Original data

(Sequential acquisition)
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Sparsity-promoting recovery: Random dithering
SNR=10.5dB
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Conventional recovery: Random time-shifting
SNR=5.04 dB
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SNR = 9.52 dB

Sparsity-promoting recovery: Random time-shifting
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Sparsity-promoting recovery: Constant time-shifting
SNR=4.80dB
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Simultaneous acquisition is a linear
subsampling system

Critical for reconstruction quality:

» design of source subsampling schemes
(i.e., acquisition scenarios)

» appropriate sparsifying transform
» sparsity-promoting solver




» Extensions to simultaneous acquisition
frameworks for towed streamer surveys

» Use different transforms for sparsity-
promoting processing
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