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Summary

Seismic data acquisition forms one of the main bottlenecks 
in  seismic imaging and inversion. The high  cost  of 
acquisition work and collection of massive data volumes 
compel the adoption of simultaneous-source seismic data 
acquisition - an  emerging technology that is developing 
rapidly, stimulating both geophysical research and 
commercial efforts. Aimed at improving the performance of 
marine- and land-acquisition crews, simultaneous 
acquisition calls for development of a new set  of design 
principles and post-processing tools. Leveraging 
developments from the field of compressive sensing the 
focus here is  on simultaneous-acquisition design and 
sequential-source data recovery. Apart from proper 
compressive sensing  sampling schemes, the recovery from 
simultaneous simulations depends on a sparsifying 
transform that compresses seismic data, is  fast, and 
reasonably incoherent with the compressive-sampling 
matrix. Using the curvelet transform, in which seismic data 
can be represented parsimoniously, the recovery of the 
sequential-source data volumes is achieved using the 
sparsity-promoting program — SPGL1, a solver based on 
projected spectral gradients. The main outcome of this 
approach is a new technology where acquisition related 
costs are no longer determined by the stringent Nyquist 
sampling criteria.

Introduction

Seismic exploration techniques involve the collection of 
massive data volumes—where sampled wavefields exhibit 
up to 5-dimensional structure—and their exploitation 
during processing. Consequently, some of the fundamental 
shortcomings in our workflow are related to the Nyquist 
sampling criteria and the ‘curse of dimensionality’  which 
results in an exponential increase in volume on addition of 
extra dimensions to our data collection.

In this paper, we propose an alternate sampling scheme 
adapted from the field of “compressive sensing” which is 
aimed at removing these impediments via dimensionality 
reduction techniques based on randomized subsampling. 
With this dimensionality reduction, we arrive at a sampling 
framework where the sampling rates no longer scale 
directly with the size and the desired resolution of our 
acquisition areas, but with  the transform-domain 
compression; more compressible data requires less 
sampling.

Compressive sensing overview

Compressive sensing (abbreviated as CS throughout the 
paper) is a process of reconstructing a signal utilizing the 
prior knowledge that it is sparse or compressible in some 
transform domain. The core idea of CS is a novel sampling 
technique, which under certain conditions can lead to 
smaller sampling rate compared to the conventional 
Nyquist sampling rate. CS is  based on three key elements: 
randomized  subsampling, sparsifying transforms and 
sparsity-promotion recovery by convex optimization.

One of the main advantages of CS is that  it combines 
transformation  and encoding in a single linear step, 
resulting in a direct  application of this technology in 
seismic acquisition where the acquisition costs are 
quantified by the transform-domain sparsity of seismic data 
instead of the grid size. This scheme aims to design 
acquisition surveys in a way that renders  the randomized 
subsampling related artifacts—whether caused by periodic 
missing traces or by crosstalk between simultaneous 
sources—harmless by turning them into  incoherent 
Gaussian noise that can be easily removed during 
processing.

By solving a sparsity-promoting problem (Candès  et al., 
2006; Donoho, 2006; Herrmann et al., 2007; Mallat, 2009), 
we reconstruct high-resolution data volumes from the 
randomized samples at the moderate cost of a minor 
oversampling factor compared to data volumes obtained 
after conventional compression (see e.g. Donoho et al., 
1999, for wavelet-based compression). With sufficient 
sampling, this  nonlinear recovery outputs a set  of largest 
t ransform-domain coefficients  that produces a 
reconstruction with a recovery error comparable with the 
error incurred during conventional compression. As in 
conventional compression this error is  controllable, but in 
the case of CS this recovery error depends  on the sampling 
ratio—i.e., the ratio between the number of samples taken 
and the number of samples of the high-resolution data. 
Because compressively sampled data volumes are much 
smaller than high-resolution data volumes, we reduce the 
dimensionality and hence the costs  of acquisition, storage, 
and possibly of data-driven processing.

The sparse recovery problem involves solving an 
undertermined system of equations
                                         b = A x0                                     (1)
where b ∈ Rn represents the compressively sampled data of 
n measurements , the compressive sensing (or 
measurement) matrix A ∈ Rn×N represents the sampling 



operator that collects the acquired samples from a high-
resolution data f0 ∈ RN, which has a sparse reperesentation 
x0 ∈ RN. Therefore, the sparsity-promoting recovery is 
achieved via solving the convex optimization problem (also 
known as the ‘Basis Pursuit’ (BP) problem)
            ~            x = arg min ||x||1     subject to    b = A x0 ,                   (2)
                          x
with  x representing the estimated coefficients and the l1 
norm ||x||1 is the sum of absolute values of the coefficients 
in  the vector x. The optimization problem, therefore, finds a 
sparse or (under some conditions) the sparsest solution that 
explains data exactly. 

Invoking techniques  of CS, the recovery of a k-sparse 
signal—i.e., with k ≤ N non-zeros in x—is possible as long 
as any subset S of k columns of the n × N matrix A behaves 
approximately like an orthogonal basis. In  this  case, a 
restricted isometry constant δk —which bounds the energy 
of the signal—is the smallest quantity that  can be defined 
such that
     (1 - δk ) || xS ||2    ≤  || AS xS ||2   ≤  (1 + δk ) || xS ||2          (3)               

for all subsets  S, with the cardinality of S — | S |  ≤ k. The 
mutual  coherence between the columns of A, µ(A), 
provides a bound on the restricted isometry constant δk as

                            δk  ≤  ( k - 1 ) µ(A)                                  (4)
with
             µ(A)  =   max      | aiH aj | / ( || ai ||2  ⋅   || aj ||2 ),       (5)   
                                                                       1 ≤ i ≠ j ≤ N

where ai  is  the ith column of A and H  denotes the Hermitian 
transpose. Hence, the mutual coherence of a matrix A  is the 
largest absolute normalized inner product between different 
columns from A, which is a way to characterize the 
dependence between the columns of A (Bruckstein et al., 
2009). For a successful (CS) recovery, the mutual 
coherence between the columns of the measurement matrix 
A should be small, consequently, a smaller δk  captures 
more signal-energy  leading to a more stable inversion of A 
for  signals x with maximally k non-zero entries.

Random matrices with Gaussian i.i.d. entries  with variance 
n-1 have a small mutual  coherence—they contain subsets of 
k columns that are incoherent, and hence a small δk . The 
sparse recovery problem (Equation (2)) recovers the k non-
zero coefficients exactly as long as

                       k  ≤  C ⋅ n / (log2 (N/n))                               (6)
with  C as a constant. This proves an important result 
wherein the recovery of k non-zeros only requires an 
oversampling ratio of n/k ≈ C ⋅ log2 N, as  opposed to  taking 
all N measurements, for large N - typical  for seismic data. 
Therefore, only a few number of measurements ( n  << N ) 
are required to recover the nonzeros.
In a nutshell, according to CS, high accuracy recovery is 
possible when — i) x0 is sufficiently sparse—i.e., it has a 

sparsifying representation that exploits the structure of the 
signal by mapping the signal energy into a small  number of 
significant transform-domian coefficients, ii) the 
measurement matrix renders the coherent subsampling 
artifacts incoherent, i.e., behaves like a Gaussian matrix. 

Experimental setup

Compressive sensing provides powerful tools  for acquiring 
signals that have a sparse representation in some transform 
domain via sampling strategies/rates that are small 
compared to the conventional Nyquist sampling rate. 
However, exploiting these tools in exploration seismology 
is  not readily feasible, based on the previously outlined 
mathematical formulation of CS, due to  the complex nature 
of seismic data in high dimensions. Hence, our focus is 
specifically on the design of source subsampling schemes 
that favor recovery and on the selection of the appropriate 
sparsifying transform. 

Seismic data permits sparse representation with multiscale 
and multidirection transforms that capture the “wavefront-
set” of the subsurface reflectors. By construction, curvelets 
are well  adapted to data with wavefront-like features, 
hence, are well suited for representing seismic data 
parsimoniuosly as the elements of this tranform behave 
approximately as high-frequency asymptotic eigenfunctions 
of wave equations (see e.g. Smith, 1998; Candès and 
Demanet, 2005; Candès et al., 2006a; Herrmann et al., 
2008). Therefore, we use curvelet transform as  the 
sparsifying transform in our study.

During seismic data acquisition, data volumes are collected 
that represent discretizations of analog finite-energy 
wavefields in two or more dimensions including time. We 
recover the discretized wavefield f  by inverting the 
compressive-sampling matrix
                                        def
                                     A  =  R M SH ,                              (7)
where R is a restriction matrix acting on the measurement 
matrix M, and SH is the sparsifying synthesis matrix, with 
the sparsity-promoting program
~                        ~
f = SH x   with   x = arg min ||x||1     subject to    b = A x    (8)      
                                                            x

This formulation differs from standard compressive sensing 
because we allow for a wavefield representation that is 
redundant—i.e., S ∈ CP×N with P  ≥ N. The algorithm for 
the recovery problem involves the following steps:
1. Inversion of an underdetermined system by promoting 

signal sparsity.
2. Exploit sparsity in  the transform (curvelet in  our case) 

domain as a prior.
3. Find the sparsest set of coefficients that  explain/match 

the data using the one-norm minimization solver that is 
capable of handling large systems. We use SPGL1 (Berg 
and Friedlander, 2008).
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4. Recover the sequential-source data via synthesis, i.e., 
apply the inverse curvelet transform to the coefficients.

We present two simultaneous-source acquisition 
approaches by studying the performance of our algorithm 
on  a seismic line from the Gulf of Suez (Figure 1). The two 
approaches differ in the definition of the measurement 
matrix.

Approach I. Random amplitude encoding

This approach can be considered as the simultaneous 
‘Land’ acquisition where the sequential impusive sources 
are replaced with the impulsive simultaneous ‘phase-
encoded’  sources. Mathematically, measurements with the 
phase-encoded sources are obtained by replacing the 
identity matrix (the source-sampling matrix in sequential 
source acquisition) with the measurement matrix defined 
by:          def
          M  =  [ I ⊗ diag(η) Fs* diag(eiθ ) Fs ⊗ I ] ,             (9)
                           
where the action of the identity matrix is  replaced with the 
action of ‘phase-encoded’  matrix, which is a combination 
of applying the Fourier transform (Fs) along the source 
coordinate, uniformly drawn random random phase 
rotations θ ∈ [0,π], an inverse Fourier transform (Fs*) and 
multiplication with  a random sign  vector diag(sign(η)) with 
η ∈ N(0,1). This formulation  follows from the work by 
Romberg (2009) and Herrmann et al. (2009) wherein the 
above mentioned combination corresponds to the action of 
a Gaussian matrix. Application of this  measurement matrix 
turns the sequential  sources into simultaneous sources, i.e., 
one simultaneous ‘supershot‘  wherein all  the sources fire 
simultaneously, and the restriction matrix selects a subset 
(ns’) of these supershots  generated by different  randomly-
weighted simultaneous sources. The (restricted) 
measurement matrix now has an aspect ratio  of ns’  / ns and 
the recovery problem boils down to solving  an 
underdetermined system (ns’ << ns) of linear equations. 
Figure 2 illustrates the transition in the data collected from 
a conventional sequential-source experiment to 
simultaneous source experiments. In reality, this sort of 
sampling is  perhaps  physically  unrealizable—i.e., we 
typically do  not  have large numbers of vibroseis trucks 
available—it gives us the most favorable recovery 
conditions from the CS perspective. Therefore, our ‘Land’ 
acquisition will serve as a benchmark with which we can 
compare alternative and physically more realistic 
acquisition scenarios.

Approach II. Random time dithering

This approach can be considered as the simultaneous 
‘Marine’  acquisition where the sequential acquisition with a 
single airgun is replaced with continuous acquisition with 
multiple airguns firing at random times and at random 
locations. Here, the sampling operator is defined as:

                                          def
                                  RM  =  [ I ⊗ T ] ,                          (10)

where the linear operator T turns the sequential source 
recordings into continuous recordings with ns* impulsive 
sources firing at random positions, selected uniformly-
random from [1.... ns] discrete source indices and from 
discrete random time indices, selected uniformly from  
(0....(ns* - 1) x nt) time indices. The operator T acts  on both 
the time and the source coordinate. Hence, in this  scenario, 
a seismic line is mapped into  a single long ‘supershot’ that 
consists of a superposition of ns* impulsive shots. Figure 3 
represents a subset  of this long record. Notice that this type 
of ‘Marine’  acquisition is  physically realizable as long as 
the number of simultaneous sources involved is limited.

Discussion and conclusions

We simulate ‘Land’ data for (subsampling ratio) δ  = 0.5, 
i.e., 64 simultaneous source experiments with all  sources 
firing and study the recovery based on 3-D curvelets. We 
conduct a similar experiment for the ‘Marine case’ where 
we randomly select 128 shots  from the total survey time T 
= δ × (ns - 1) × T0, yielding the same aspect ratio for the 
sampling matrix. Using the 3-D curvelet transform, which 
attains higher sparsity because it  explores continuity of the 
wavefield along all three coordinate axes, the recovery 
results for ‘Land’  and ‘Marine’  acquisition are summarized 
in  Figures 4 and 5. One of the observations made is that  it 
is  clear that accurate recovery is possible by solving an L1- 
optimization problem using SPGL1 (Berg and Friedlander, 
2008) while limiting the number of iterations to 200. 
Second, ‘Land’ acquisition clearly favors recovery by 
curvelet-domain sparsity promotion compared to ‘Marine’ 
acquisition. This  is true despite the fact that the 
subsampling ratio, i.e., the aspect ratio of the sampling 
matrices, are the same. This becomes clear by realizing that 
the difference lies in the mutual coherence of the two 
sampling matrices where the columns of the sampling 
matrix for ‘Land’ acquisition are more incoherent and 
hence more independent. This  favors (better) recovery in 
the ‘Land’  acquisition scenario. The SNR for ‘Land’ 
acquisition is computed to be 11.5dB, and 11.1dB for 
‘Marine’  acquisition, which justify the above made 
observations. Notice that ‘Marine’ acquisition works 
relatively so well  because it randomizes along two 
coordinates—time and source, as  opposed to  randomizing 
along the source coordinate only as in ‘Land’ acquisition.

In summary, following ideas  from CS, seismic wavefields 
can be reconstructed from randomized subsamplings.  
Acquisition and processing costs are no longer determined by 
the resolution and size of the acquisition survey, rather, they 
scale with transform - domain sparsity of the wavefield, and a 
new paradigm for randomized processing and inversion. 
Recovery from simultaneous simulations depends on 
transform-domain sparsity wherein sparser signals—i.e., 
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signals with a small number of significant transform-
domain coefficients permit better recovery. This new 
sampling paradigm can be successfully exploited in  various 
problems in exploration seismology to effectively repulse 
the curse of dimensionality.

Figure 1. Fully sampled sequential data from conventional 
sequential acquisition with 128 shots, 128 receivers and 
512 time samples.

Figure 2. Compressively sampled ‘Land’ data (δ = 0.5).

Figure 3. Compressively sampled ‘Marine’ data (δ = 0.5).
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                                                ~
[ Note: SNR =  − 20 log( || f - f ||2 / || f ||2 ) ]

Figure 4. Recovery from ‘Land’ data (SNR = 11.5dB).

Figure 5. Recovery from ‘Marine’ data (SNR = 11.1dB).
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