Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2011 SLIM group @ The University of British Columbia.

Migration with surface-related multiples from incomplete seismic data Ning Tu, Tim Lin and Felix Herrmann

We want data like this

However...

Migration with surface-free data with missing shots

SLIM 🐣

Migration of primary impulse response

Or... with surface multiples?

amplitude spectrum: primaries @15Hz

amplitude spectrum: primaries @15Hz

amplitude spectrum: multiples @15Hz

SLIM 🛃

amplitude spectrum: multiples @15Hz

amplitude spectrum: multiples @15Hz

SLIM 🐣

What is stopping us?

from complete data

Migration from data with surface multiples

Rethink multiples

Rethink multiples

Lin, Tu, and Herrmann, 2010

Verschuur and Berkhout, 2011

Whitmore, Valenciano, and Sollner, 2010 Extra illumination from surface multiples

SLIM 🐣

Sounds reasonable, but...how?

Verschuur, 1992

Extra illumination from surface multiples

From the formulation of SRME

Groenestijn and Verschuur, 2009

Lin and Herrmann, 2010

Exploit the extra illumination with EPSI

- EPSI : Estimation of Primary via Sparse Inversion
- Inverts the Green's function from the total up-going wavefield.
- Exploits the sparsity of the Green's function in data space.

Motivation

- How to exploit this extra illumination in seismic imaging?
- How to exploit the sparsity in the image space instead of data space?

Relate data space and model space

Groenestijn and Verschuur, 2009

Lin and Herrmann, 2010

EPSI operator relates...

Verschuur, 1992 Herrmann, 2008 Lin and Herrmann, 2010

EPSI Formulation

EPSI follows the formulation of SRME:

 $\hat{\mathbf{P}} = \hat{\mathbf{G}}(\hat{\mathbf{Q}} - \hat{\mathbf{P}})$

Matrix-vector formulation of EPSI:

$$\underbrace{\mathcal{F}_t^* \text{BlockDiag}_{1...nf}[(\hat{\mathbf{Q}} - \hat{\mathbf{P}})^* \otimes \mathbf{I}]\mathcal{F}_t}_{\mathbf{E}} \mathbf{g} = \mathbf{p}$$

Lin and Herrmann, 2010

SLIM 🐣

Robust EPSI

Convex sparsity-promoting formulation:

SLIM 🐣

Migration operator relates...

SLIM 🐣

Migration operator relates...

sparser

Lin, Tu, and Herrmann, 2010

SLIM 🔮

Approximate EPSI

Neglecting internal multiples:

$$\hat{\mathbf{P}} \approx \delta \hat{\mathbf{G}} (\hat{\mathbf{Q}} - \hat{\mathbf{P}})$$

Convex sparsity-promoting formulation:

$$\begin{split} \delta \tilde{\mathbf{g}} &= \min_{\delta \mathbf{g}} \| \delta \mathbf{g} \|_{1} & \text{subject to } \underbrace{\| \mathbf{p} - \mathbf{E} \delta \mathbf{g} \|_{2} \leq \sigma}_{\text{data fitting part}} \end{split}$$

Lin and Herrmann, 2011

EPSI with sparsifying transform

Migration as a sparsifying transform

Combination of EPSI and migration

SLIM 🐣

Linearized data examples

SLIM 🐣

Linearized data

• surface-free data

 $\mathbf{p_1} = \mathbf{K} \delta \mathbf{m}$

total data

 $\mathbf{p_2} = \mathbf{E}\mathbf{K}\delta\mathbf{m}$

True velocity perturbation

True model perturbation

Linearized Surface-free data

Linearized Green's function: full data

Linearized total data

Linearized total data: full data

Sparse inversion of surfacefree data

SLIM 🛃

Migration of surface free data

Sparse inversion of total data

Migration of total data

In case of incomplete data

surface-free case:

 $\delta \tilde{\mathbf{m}} = \mathbf{S}_{2}^{*} \underset{\mathbf{x}}{\operatorname{argmin}} ||\mathbf{x}||_{1} \text{ subject to } ||\mathbf{RM}(\mathbf{p}_{1} - \mathbf{KS}_{2}^{*}\delta \mathbf{x})||_{2} \leq \sigma$ free-surface case *:

$$\begin{split} \delta \tilde{\mathbf{m}} &= \mathbf{S_2^*} \operatorname*{argmin}_{\mathbf{x}} \ ||\mathbf{x}||_{\mathbf{1}} \ \text{ subject to } ||\mathbf{RM}(\mathbf{p_2} - \mathbf{EKS_2^*x})||_{\mathbf{2}} \leq \sigma \end{split}$$

* we assume that full data is available to build the EPSI operator

Wason and Herrmann, 2011

Simultaneous data: surfacefree data

total recording time ~100s

SLIM 🐣

SLIM 🐣

Simultaneous data: total data

total recording time ~100s

Sparse inversion of surfacefree Green's function

SLIM 🛃

Migration of surface free data

Sparse inversion of total data

Migration of total data

SLIM 🐣

Example with finite-difference forward modelling data

Synthetic data

- A complete synthetic data is made first, using a time domain FD method.
- 150 sources/receivers, with 15m spacing
- Ricker wavelet up to 60Hz is used
- Run Robust EPSI to get Green's function, and separate primaries and multiples.

Total data

Green's function

Surface free data: full data

Zero out 40 shot-gathers

Data with missing shots

SLIM 🐣

Zero out 40 shot-gathers

Surface free data with missing shots

75 15 0.0 Ο 0.5 .0 Time (s) 50₅₀urce Ŋ **N**-50 100 Ο 0

Receiver

Sparse inversion of surfacefree Green's function

SLIM 🐣

Migration of primary impulse response

Combined inversion of total data

Migration of total data

Field data examples

Gulf of Suez data

- Very shallow water, strong surface multiples
- Also contains great amount of internal multiples
- About 4s recording time
- 25m distance between two consecutive sources/receivers

Total data: one shot-gather [shown with AGC]

Primaries: one shot-gather [shown with AGC and muting] Offset 2 -2 \mathbf{O} (s) Time 2 M 4

Primary: the 89th shot gather

Semblance plot-total data

Semblance Scan :cmp177

Semblance plot-primaries

Semblance Scan :cmp177

SLIM 🐣

Stacking velocity-surface free data

SLIM 🛃

Stacking velocity

Stacked section-total data [shown with time-weighting] Midpoint (km) 0.5 2.5 3.5 1.5 2 3 $\mathbf{0}$ 4 0-Time (s) 2 M-4

Brute stacking

Brute stacking

Migration velocity

SLIM 🛃

interval velocities

If multiples are not properly handled...

SLIM 🛃

Migration of total data without EPSI

EPSI+L1 migration of total data

Migration of total data

Conclusions

- Multiples are well handled by combining EPSI and migration.
- For incomplete data with insufficient illumination, we do reap benefits from using multiples.

SLIM 🐣

Future plans

- How to adapt EPSI for incomplete data
- Speed-up this joint inversion by introducing simultaneous sources

References

Herrmann, F. J., 2008, Seismic wavefield inversion with curvelet-domain sparsity promotion, Presented at SEG.

SLIM

Herrmann, F. J. and X. Li, Randomized dimensionality reduction for fullwaveform inversion: Presented at the 72nd EAGE Conference & Exhibition.

Wason, H, F. J. Herrmann, and T.T.Y. Lin, Sparsity-promoting recovery from simultaneous data: A compressive sensing approach, Presented at SEG '11

Lin, T., and F. J. Herrmann, 2010, Stabilized estimation of primaries via sparse inversion: Presented at the 72nd EAGE Conference & Exhibition.

Lin, T., N. Tu and F. J. Herrmann, 2010, Sparsity-promoting migration from surface-related multiples: Presented at the 80th SEG Conference

Wang, J. and M. D. Sacchi, High-resolution wave-equation amplitude-variationwith-ray-parameter (AVP) imaging with sparseness constraints: Geophysics, 72, SII-SI8

Symes, W., Approximate linearized inversion by optimal scaling of prestack depth migration: Geophysics, 73, R23-R35

References

Nemeth, T, C. Wu and G.T. Schuster, Least-squares migration of incomplete reflection data: Geophysics, 64, 208-221

SLIM

Whitmore, N.D., A.A.Valenciano, and W. Sollner, Imaging of primaries and multiples using a dual-sensor towed streamer, Presented at SEG '10

van den Berg, E., and M. P. Friedlander, 2008, Probing the pareto frontier for basis pursuit solutions: SIAM Journal on Scientific Computing, 31, 890–912.

van Groenestijn, G. J.A., and D. J. Verschuur, 2009, Estimation of primaries and near-offset reconstruction by sparse inversion: Marine data applications: Geophysics, 74, R119– R128.

Verschuur, D. J., 1992, Adaptive surface-related multiple elimination: Geophysics, 57, 1166.

Verschurr, D. J. and Berkhout A.J., 2011, Seismic migration of blended shot records with surface-related multiple scattering: Geophysics, 76, A7-A13

Acknowledgements Comparents

- Thanks to all my colleagues for the beneficial discussions
- Thanks to Eric for the advice on working with incomplete data, and for sharing with us the Gulf of Suez dataset.

This work was in part financially supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant (22R81254) and the Collaborative Research and Development Grant DNOISE II (375142-08). This research was carried out as part of the SINBAD II project with support from the following organizations: BG Group, BP, Chevron, ConocoPhillips, Petrobras, Total SA, and WesternGeco.