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Dimensionality-reduced estimation of
primaries by sparse inversion




Motivation

p Data-driven methods
Estimation of Primaries by Sparse Inversion (EPSI)

p Curse of dimensionality

In 3D these methods suffer from exponential growth in
computational & storage demands

[Herrmann, F J., 2010, Randomized sampling and sparsity]



Objective

Reduction in computational and storage demands:
p dimensionality-reduction technique

p adaptive low-rank approximation

p blackbox model




p Estimation of Primaries by Sparse Inversion (EPSI)

p Dimensionality reduction via Randomized Singular Value

Decompositions (r-SVD’s)
p Results

p Conclusions




recorded data predicted data

P = G(Q+ RP)

total up-going wave-field

down-going source signature

reflectivity of free surface

surface-free Green’s function

[van Groenestijn and Verschuur, 2009]
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Fourier transform

Monochromatic “data matirices”

Extract monochromatic
shot records

[Ewoud van Dedem, 2002]




EPSI| problem

recorded data predicted data
P=G(Q—-P)
“low-rank” matrix (known)

full-rank diagonal matrix (known)

assume —1

Q> w> O

unknown



EPSI problem

EPSI linear algebra format:

Ax ~Db

x = arg min|x[ly  subject to |[Ax—Db|lz <o
X %ﬁ
v .
sparsity promoting part data fitting part



EPSI linear algebra format:

(Q-P);o1)

Combination with sparsity promotion:

A = UC* C is curvelet transform
x : discrete curvelet representation of

b : discrete representation of P




A

Data matrix P
® dense
® |ow-rank

® extremely large

p each frequency is a 10° x 10° matrix where n, = ns = 1000

® expensive to access & store

® high mat-mat multiplication cost O(/N?)




Challenges in solving the optimization problem

® multiple iterations

® multiple evaluations ofA, A" and A*A




Dimensionality-reduction via SVD

Approximate data matrix P with low-rank factorization:

P =G(Q-P)

P~UXV”®

U, xk left singular vectors :
k : approximate rank

Dk xk singular values k<< mm(n n )
Ty '¥S

Vi, xk right singular vectors




Dimensionality Reduction Via SVD

Approximate data matrix P with low-rank factorization:

)y

10.
A

5 10 1B 2

n, X k k X ng

k : approximate rank
k<< min(n,,ng)




Dimensionality Reduction Via SVD

Advantages of using low rank factorization

Low-rank

Regular method .
approximation

Matrix-Matrix
multiplication

O(N?) O(kN?)

Storage (bytes) O(N?) O(2Nk + k?)




Full vs approximated data

Approximated P

k=20=14%
SNR = 16dB




Full vs approximated data

P— approximated P

Multiplication speed up
/.5X

Memory usage

70% less




Full vs approximated data

Approximated P

k=8=5%
SNR =8dB




Full vs approximated data

P approximated P

Multiplication speed up
20x

Memory usage

90% less




Singular values of the data matrices P, ,,,

Objective:

Approximate all
frequency slices
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Singular values of the data matrices P, ,,,

Challenge:

s SVD IS SLOW
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Singular Value Decomposition (SVD)

Randomized SVD:

Requires action of data matrix on small number of
randomized vectors (simultaneous shots)

Fast O(mnlog(k))

Classical SVD:
Slow O(mnk)

[Halko, N., P. G. Martinsson, and }J. A. Tropp, 2011]



Singular Value Decomposition (SVD)

Randomized vs. Classical SVD

Example

# rows = # columns = 10000
k =20% = 2000

SVD
O((10,000)? % 2000)

R-SVD
O((10,000)* * log(2000)) 200x Faster !




Dimensionality Reduction Via RSVD

Two-stage approach:

A

. capture action of the data P matrix on k 4 [ random

vectors A A
Y =PW
W : Gaussian random matrix

[ is a small over sampling parameter (1-8)

. formaSVDon Y

[Halko, N., P. G. Martinsson, and }J. A. Tropp, 2011]




Dimensionality Reduction Via RSVD




Dimensionality Reduction Via RSVD

A

Stage |: Capturing the action of P
2. Form a low-rank QR factorization Y ~ QR

Y Q R

5 10 15 2




Dimensionality Reduction Via RSVD

Stage 2 : Compute an approximate SVD of P
1. Form B = Q*f’




Dimensionality Reduction Via RSVD

Stage 2 : Compute an approximate SVD of P
2. Compute SVD of the small matrix B = Uuxv*

5 10 15 20

k x k k*ng




Dimensionality Reduction Via RSVD

Stage 2 : Compute an approximate SVD of P
3. Compute U = QfJ

5 1015 2




Dimensionality Reduction Via RSVD

Stage 2 : Compute an approximate SVD of P

approximated P >

2

5 10 15 2

k X ng




EPS| Formulation
R-SVD
Results

® 2D seismic line ( Gulf of Suez )

p g = N, = 399
p 1y = 1024, dit = .004s

® Adaptive approximation

® Compare results from EPSI using full vs. approximated
data




Gulif of Suez

Total Data

shot gather

Ny = 300
Ng = 300
dt = .004s




Singular values of the data matrices P, ,,,
_ |

Adaptive approximation

—
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|1>° For each frequency find rank k
such that
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Adaptive rank selection

140 T T 1 |

*\/w

Mumberofcolumnz uzed
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Frequencylndex

sum of all k ranks used is 9% of total number of columns




Gulif of Suez

Total Data

shot gather

Ny = 300
Ng = 300
dt = .004s




Gulif of Suez

Full Data
Primary IR (G)

shot gather
2D Curvelet (Src-Rcv)

| 50 iterations




Gulf of Suez

20% of rank budget
Primary IR (G)
SNR = 27dB

shot gather
2D Curvelet (Src-Rcv)

| 50 iterations




Gulf of Suez

12% of rank budget
Primary IR (G)
SNR = 17dB

shot gather
2D Curvelet (Src-Rcv)

| 50 iterations




Gulf of Suez

8% of rank budget
Primary IR (G)
SNR = 12dB

shot gather
2D Curvelet (Src-Rcv)

| 50 iterations




Difference in EPSI Result

20% rank budget

trace

Primary IR Primary IR

Difference
full data approximated Data |




Difference in EPSI Result

12% rank budget

trace
5.31

Primary IR Primary IR
full data approximated Data

Difference




Difference in EPSI Result

8% rank budget

trace
5.31

Primary IR Primary IR
full data approximated Data

Difference




Performance Summary

Rank Percentage

SNR (dB)

Multiplication
Speedup

Memory savings




Conclusions

Data driven methods - e.g. EPSI - suffers from the ‘curse
of dimensionality’ when moving to 3D

We utilize insights from random matrix theory to
approximate action of the data matrix

Reductions in multiplication and storage costs

Up-Front cost of RSVD is O(mnlog(k))
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