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SUMMARY

Data-driven methods—such as the estimation of primaries by
sparse inversion—suffer from the ’curse of dimensionality’,
which leads to disproportional growth in computational and
storage demands when moving to realistic 3-D field data. To re-
move this fundamental impediment, we propose a dimensional-
ity reduction technique where the ’data matrix’ is approximated
adaptively by a randomized low-rank approximation. Com-
pared to conventional methods, our approach has the advantage
that the cost of the low-rank approximation is reduced signif-
icantly, which may lead to considerable reductions in storage
and computational costs of the sparse inversion. Application of
the proposed formalism to synthetic data shows that significant
improvements are achievable at low computational overhead
required to compute the low-rank approximations.

THEORY

The success of estimating primaries by sparse inversion (EPSI,
van Groenestijn and Verschuur, 2009; Lin and Herrmann, 2009;
Lin et al., 2010; Lin and Herrmann, 2011)—a particular in-
stance sparsity-promoting wavefield inversion (Herrmann and
Wang, 2008)—hinges on three key components, namely (i) the
existence of a fast sparsifying transform that explores struc-
ture of the surface-free Green’s function, e.g. by the discrete
curvelet transform; (ii) a large-scale solver that promotes spar-
sity, e.g. spectral-projected gradients (SPG`1 Berg and Fried-
lander, 2008); and (iii) fast evaluation of the monochromatic
data matrix and its adjoint. Of these three components, the
evaluation of the action of the data matrix is by far the most
challenging because it is expensive—the data matrix is full—
and requires access to all data. To make things worse, this data
matrix is applied iteratively during the inversion. In this paper,
we propose a new approach to address this issue by using a low-
rank approximation of the data matrix. Before going into detail,
let us first briefly review our sparsity-promoting formulation
for the estimation of primaries.

Sparsity-promoting wavefield inversion
To exploit the multi-dimensional geometry exhibited by seis-
mic wavefields, we take Berkhout’s monochromatic matrix
notation—where monochromatic shot gathers are collected
in the columns of a matrix—and cast this formulation into a
matrix-vector form that is amenable to a solution by a sparsity-
promoting program. For this purpose, consider the following
linear relationship, bGi bUi ≈ bVi, i = 1 · · ·n f , (1)

between the two known discretized monochromatic wavefieldsbUi and bVi, and the unknown wavefield bGi at angular frequency
ω = (i− 1)∆ω, i = 1 · · ·n f with ∆ω the sampling rate in the
Fourier domain and n f the number of frequencies. For sim-
plicity, we assume the source and receiver coordinates to be
co-located so that all matrices in Equation 1 are square. When

possible we will also drop the frequency subscript in our nota-
tion. Finally, we used the ≈ symbol to indicate the presence of
noise.

Even though the monochromatic data matrices are square, they
are not full rank because data has a finite aperture. In addi-
tion, the data and hence the data matrix is scaled by the source
wavelet, which scales frequencies at the low and high-ends of
the spectrum. As a consequence, data matrices bUi, i = 1 · · ·n f
are ill conditioned and challenging to invert because of instabil-
ities related to small singular values.

A common practice to counter these instabilities is to impose an
energy penalty on the solution through damped least-squares.
This regularization has the advantage that it yields an explicit
expression for the inverse (denoted by theesymbol) readingebGi ≈ bVi bU∗
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with the symbol ∗ denoting the conjugate transpose and εi a
frequency-dependent regularization parameter, which controls
the data misfit versus the energy penalty on bG.

Unfortunately, this monochromatic formulation has a number
of problems. First, minimizing the energy leads to unnecessary
loss of high frequencies. Second, the source function leads to
different energy levels at different frequencies and this calls for
different εi for each frequency. Finding a single trade-off pa-
rameter ε is already challenging, finding one for each frequency
requires knowledge on the noise level for each frequency. Third,
minimizing energy does not exploit multidimensional structure
exhibited by seismic wavefields.

Each of these issues make the inversion of discrete wavefields
challenging, especially for noisy real data. To address this
challenge, we cast Equation 1 into a form that allows us to
solve the unknown wavefield with curvelet-domain sparsity
promotion. For this purpose, we use the matrix identity
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“

BT ⊗A
”

vec(X) , (3)

which holds for arbitrary matrices A,X, and B. In this expres-
sion ⊗ refers to the Kronecker product and vec stands for the
linear operation that stacks the columns of a matrix into a long
concatenated vector (matlab’s colon operator). Equation 1 now
becomes“bUT
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with I the identity matrix. After inclusion of the curvelet syn-
thesis and temporal Fourier transforms (Ft = (I ⊗ I ⊗Ft) with
Ft the temporal Fourier transform), we finally arrive at the
following block-diagonal system
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This equation is amenable to transform-domain sparsity promo-
tion —i.e., Equation 5 can be written as

Ax ≈ b (6)

with A := UC∗, where x is the discrete curvelet representa-
tion of g(t,xs,xr), C the curvelet transform, and bv the discrete
representation of v(t,xs,xr).

Solving for the transform-domain representation of the wave-
field g(t,xs,xr) with t time, xs the source and xr the receiver
coordinates, now corresponds to inverting a linear system of
equations where the monochromatic wavefield {bUi}i=1···n f and
temporal wavefield {Vi}i=1···nt are related —through the tem-
poral Fourier transform—to the curvelet representation of the
discretized wavefield vector g in the physical domain.

The linear operator A first applies the inverse curvelet-transform
to the vector x, yielding the discrete approximation of the wave-
field g(t,xs,xr), followed by the application of the temporal
Fourier transform operator Ft and the “vectorized” matrix-
matrix multiplication by

“bUT
i ⊗ I

”
for each frequency, i.e., for

i = 1 · · ·n f . In the time domain, these operations correspond to
a multidimensional convolution between discrete approxima-
tions of the wavefields g(t,xs,xr) and u(t,xs,xr). Application

of A∗ is similar, except that it applies
“b̄Ui⊗ I

”
for each fre-

quency (with the bar denoting complex conjugate), followed
by the forward curvelet transform. This forward transform is
applied to a vector that contains the result of a multidimensional
correlation of two discrete wavefields.

EPSI
As shown by Lin et al. (2010); Lin and Herrmann (2011), the
above formulation specializes in the case of estimation of pri-
maries into

U := F∗t blockdiag
hbQ−bPi

1···n f
Ft , (7)

with bQ = Ibq(ω) the temporal Fourier transform of the source
function and bP the Fourier representation of the upgoing wave-
field. Throughout this paper, we will assume this source func-
tion to be known. In this expression, matrices representing the
source functions are full or close to full rank (e.g., bQ = Ibq(ω)
is full rank) and the data is typically rank deficient.

To overcome this rank deficiency, we regularize the inversion
by exploiting sparsity by solving(ex = argminx ‖x‖1 subject to ‖Ax−b‖2 ≤ σeg = S∗ex (8)

in which σ is a noise-dependent tolerance level.We obtain the
final solution by applying the synthesis matrix S∗ to the vectorex (the symbol e denotes a vector obtained by nonlinear opti-
mization) that solves equation 8. To keep things simple for now,
we set S = I to the identity basis.

DIMENSIONALITY REDUCTION VIA SVD’S

Solving optimization problems (cf. Equation 8) requires multi-
ple iterations involving the application of A, A∗, and possibly
A∗A. In real applications, application of these matrix-vector

multiplies is challenging because (i) the matrices are full and
extremely large, e.g. for each frequency the data matrix be-
comes easily 106×106 for ns = nr = 1000 (with ns the number
of sources and nr the number of receivers), so they require lots
of storage and computational resources; (ii) data is incomplete,
which requires ’on-the-fly’ interpolations that are costly but
have the advantage that the data matrix does not need to be
formed; and (iii) the solvers require multiple evaluations of A,
A∗, and possibly A∗A. To reduce the storage and multiplication
costs of these operations, we replace the data matrix bP by a
low-rank approximation.

Because data matrices are large and expensive to form, we adapt
a two-stage randomized SVD proposed by Halko et al. (2011).
This technique only requires the action of the data matrix on
a small (depending on the numerical rank of the data matrix)
collection of random vectors, followed by QR factorization. As
in Halko et al. (2011), we write the first stage asbY = bP bW, (9)

with bW∈Cns×(k+p) a complex-valued Gaussian random matrix
with k+ p columns and p a small oversampling factor (typically
order 5−10). So, as long as we can apply the data matrix k+ p
times to random simultaneous ’shots’, we can approximate the
action of the full data matrix with a controllable error. For a
sufficiently large k+ p, this error is attained with overwhelming
probability (Halko et al., 2011). This means that the matrix bY
contains all information on the range of bP for k ≈ rank(bP). As
shown by Halko et al. (2011), this allows us to approximate the
SVD of bP in three steps:

1. Form a low-rank factorization bP ≈ QB with B = Q∗bP
obtained by a QR-factorization of bY.

2. Compute the SVD of the small matrix B = eUSV∗.

3. Compute U = QeU.

With this we obtain a low k-rank (with k�min(ns,nr)) approx-
imation of the action of the data matrix viabP ≈ USV∗ (10)

with U ∈ Cns×k, S ∈ Ck×k, and V ∈ Cns×k, the dimensionality
reduced system. Application of this low-rank approximation
leads to faster multiplication by bP, bP∗, and bP∗bP. Using the
orthogonality of the left singular vectors, the latter operation
can be evaluated efficiently via bP∗bP ≈ VS2V∗. Aside from
faster matrix multiplications, the above matrix factorization by
the SVD also has the advantage that it leads for small k to a
significantly reduced memory imprint.

PUTTING EVERYTHING TOGETHER

With EPSI and the low-rank approximation in place, we are
now in the position to detail our algorithm to estimate primaries
by inverting the low-rank approximation of the data matrix with
sparsity promotion. To be successful, we need to strike a bal-
ance between memory-reduction and matrix-multiply speedup
and the accuracy of the low-rank approximation in the context
of sparsity-promoting inversion.

To provide insight in this trade off between accuracy and com-
putational performance, there are three important issues to
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consider. First, we need to introduce a norm to measure the
accuracy of the low-rank approximation. For this purpose, we
introduce aside from the familar Frobenius norm, calculating
the two norm of the matrix entries, the spectral/operator norm.
The former equals the two-norm of the singular values while
the latter is defined by the maximum eigenvalue, i.e. the infin-
ity norm of the eigenvalues. The spectral norm is appropriate
because it relates the energy of a vector that is the result matrix-
vector product to the energy of the input vector. We denote these
two norms by ‖ · ‖F and ‖ · ‖S. Second, as recently reported
by Minato et al. (2011), the numerical rank of the data matrix
depends on the frequency as can be observed from Figure 1.
We need to incorporate this somehow in our low-rank approx-
imations. Third, the amplitude spectrum of seismic wavelets
|bq(ω)| vary with frequency. Consequently, the energy of the
data matrix varies with frequency and this calls for an adaptive
scheme to select the rank appropriately.

Singular spectra of the data matrix P
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Figure 1: Spectrum of the singular values of the data matrix as a function of frequency.
Notice the concentration of energy in the seismic band.
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Figure 2: Selected ranks for the low-rank approximation based on a subsampling factor of
δ = 1/5. As expected, the a larger rank is selected for the frequencies that are in the seismic
band.

To accomplish this ’rank’ adaptation, we compare—given a
certain total rank budget K—the following two scenarios:

1. assign each frequency with the same rank budget K/n f
and approximate each data matrix with this rank.

2. find for each frequency a rank k such that ‖bP−USV∗‖S ≤
ε with the accuracy ε fixed and chosen such that the
sum over all ranks is smaller than the total rank budgetP

ω
k ≤ K. In Figure 2, we include ranks estimates

with this procedure. This results clearly shows imprints

of the source function and of the fact that the rank of
the data matrix increases with frequency because wave-
fields become more complex for increasing frequency.

PERFORMANCE

To estimate the performance of the proposed algorithm, we
compare the output of our robust formulation of EPSI (Lin
and Herrmann, 2011) with the output of the second scenario
for varying subsampling ratios. For this purpose, we replace
the data matrix by its low-rank approximation and use this
approximation in EPSI. As expected, the results for the non-
adaptive scenario are inferior (13dB versus 20dB for δ = 1/5).
(Unfortunately, we can not show these results because of space
limitations.) The output of EPSI for the adaptive low-rank
approximation is included in Figure 3 for a 2D seismic line
with ns = nr = 128 and n f = 512 and K′ = δ ×min(ns,nr)×
n f � K. Juxtaposing Figures 3(a) and 3(b) shows relatively
little difference between the full data matrix and its low-rank
approximation, which can be explained by our adaptation of the
rank to the energy (i.e., the seismic wavelet) in the data matrix
for each frequency. Similarly, the corresponding estimate for
the surface-free Green’s function (Figure 3(d)) is also close to
the estimate obtained by inverting the surface multiple generator
[bQ−bP] with the full data matrix (cf. Figure 3(c)).

To get a better insight in the performance of the algorithm as a
function of the subsampling ratio δ , we conducted a series of
experiments where we vary the subsampling ratio δ . The results
are summarized in table 1 and clearly show that accurate recov-
ery is possible from small subsampling ratios. Ignoring possible
slower convergence of the `1 solver, these subsamplings can
lead to significant speedups and reduction of memory imprints.

Of course, there is an up-front cost associated with computing
the SVD’s. For low-rank matrices, these costs with classical
methods are O(nr×ns×K) for all data matrices. Using the ran-
domize approach of Halko et al. (2011), these cost are reduced
to O(nr × ns × logK), which makes this method potentially
computationally feasible for large 3-D problems.

Subsample 1/2 1/5 1/8 1/12
ratio δ

recovery error (dB) / spectral norms (×103)

88 (44) 20 (121) 16 (144) 13 (152)

Speed up (×) 2 5 8 12

Table 1: Signal-to-noise ratios, SNR = 20log10( ‖g−eg‖2
‖g‖2

) for the estimates of the surface-

free Green’s function (in bold), and spectral norms (within parenthesis) for different subsample
ratios. Notice that the spectral error expressing the difference between the full data matrix and
its low-rank approximation increases quasi linearly with the subsampling ratio.

DISCUSSION AND OUTLOOK

The presented method is exciting for the following reasons.
First, our approach reduces the storage and multiplication costs
by a factor of δ at a small up-front cost of O(nr ×ns× logK).
This improvement puts us in a good position to scale EPSI to
3-D. Second, the first stage of computing bY (cf. Equation 9)
is equivalent to simultaneous sourcing with random sources
(Herrmann et al., 2009). Because this type of sourcing is an in-
stance of compressive sensing, we can use this to further speed
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up our algorithm using approaches reported by our group in the
literature (see e.g. Herrmann, 2010; Tristan van Leeuwen and
Herrmann, 2011). This identification also opens the possibil-
ity to work directly with simultaneously acquired Marine data
(see e.g. Herrmann, 2010, and another contribution by the au-
thors to these proceedings). Third, the first stage only requires
’black-box’ access to the application of the data matrix (read
application of SRME (Verschuur et al., 1992; Berkhout and
Verschuur, 1997; Weglein et al., 1997)) on a limited number
of random simultaneous shots (read random noise). This can
be done in parallel and can leverage implementations of the
data-matrix multiply that fill in missing data on the fly, which is
common practice in 3-D SRME. Again, the burn in costs only
require K + p passes through the data, i.e., K + p applications
of the SRME operator. Fourth, our low-rank approximations
of the data matrix allow us to leverage recent extensions of
compressive sensing to matrix completion (Candes and Recht,
2009; Gandy et al., 2011) from incomplete data (read missing
traces). In these formulations, data is regularized solving the
following optimization problemeX = argmin

X
‖X‖∗ subject to ‖A (X)−b‖2 ≤ σ , (11)

with ‖ · ‖∗ =
P
|λi| the nuclear norm summing the magnitudes

of the singular values (λ ) of the matrix X. Here, A (·) a linear
operator that samples the data matrix. It is shown that this
program is a convex relaxation of finding the matrix X with the
smallest rank given incomplete data. Low-rank approximations
for tensors were recently proposed by Oropeza and Sacchi
(2010) for seismic denoising. Fifth, the singular vectors of our
low-rank approximation can be used when EPSI is combined
with imaging or full-waveform inversion, an approach similar
to recent work by Habashy et al. (2010).

CONCLUSIONS

Data-driven methods—such as the estimation of primaries by
sparse inversion—suffer from the ’curse of dimensionality’ be-
cause these methods require repeated applications of the data
matrix, whose size grows exponentially with the dimension.
In this paper, we leverage recent insights from random matrix
theory that allow us to approximate the action of the data ma-
trix via randomized SVDs. The resulting low-rank formulation
leads to significant reductions in storage and matrix multiplica-
tion costs. The burn-in costs for the low-rank approximations
themselves are, by virtue of the randomization, cheap and only
require a limited number of applications of the full data matrix
to random vectors. This operation can easily be carried out in
parallel using existing code bases for surface-related multiple
prediction and can lead to significant speedups and reductions
in memory use.
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Figure 3: Results of dimensionality-reduced EPSI. (a) Input data. (b) Low-rank approx-
imation of the data matrix (data in (a) transformed into the Fourier domain) with δ = 1/5.
(c) EPSI result obtained for the full data matrix. (d) The same but now for the low-rank
approximation. Notice that the results are very close.
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