1 7 I
\qquad
\qquad
\qquad 4完 4 （2） 4 a．
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Courtesy of Verschuur, 2009

Motivation

a migrated section from data with multiples

Motivation

a migrated section from multiple free data

Motivation

So...

Motivation

So...

Rethink multiples

But wait a minute, are they really garbage?

amplitude spectrum: primaries @15Hz

Rethink multiples

amplitude spectrum: multiples @15Hz

Rethink multiples

Surface-related multiples:

- provide wider illumination angles
- contain more higher spatial wave number contents
- more sensitive to velocity changes

Rethink multiples

They may help to deduce subsurface structure...but how?

Motivation

EPSI (Estimation of Primaries via Sparse Inversion) exploits the sparsity of the up-going Green's function

- EPSI tries to derive the up-going Green's function
- velocity model is a lot sparser than Green's function

Motivation

There seems to be some interaction between EPSI and imaging...what about let them get married, and how?

Multiples in imaging

Introduce free surface to the 'smooth' background velocity model

- violates the Born approximation assumptions
- more requirements on the exactness of the velocity model

Multiples in imaging

Full-waveform inversion

- "de-multiple" before inversion
- consists of several migration based updates

Multiples in imaging

Focal transform

- first multiples mapped to primaries
- needs the estimate of the primaries as the operator
- de-multiple followed by migration

Our approach

We combine EPSI with migration

- EPSI models primaries as well as multiples
- combine EPSI with sparsity promoting migration

Lin and Herrmann, 2010
Herrmann, 2008

EPSI Formulation

EPSI reveals the relationship:

$$
\hat{\mathbf{P}}=\hat{\mathbf{G}}(\hat{\mathbf{Q}}-\hat{\mathbf{P}})
$$

Formulating the EPSI operator:

$$
\underbrace{\mathcal{F}_{t}^{*} \mathrm{BlockDiag}_{\mathrm{f}}\left[(\hat{\mathbf{Q}}-\hat{\mathbf{P}})^{*} \otimes \mathbf{I}\right] \mathcal{F}_{\mathbf{t}}}_{\mathbf{M}} \mathbf{g}=\mathbf{p}
$$

EPSI Formulation

$$
\tilde{\mathbf{g}}=\underset{\mathbf{g}}{\operatorname{argmin}}\|\mathbf{p}-\mathbf{M g}\|_{\mathbf{2}} \text { s.t. }\|\mathbf{g}\|_{\mathbf{0}} \leq \mathbf{k} \tau
$$

\tilde{g} : estimate of the up-going Green's function p : the up-going wavefield

Robust EPSI

Replace the computationally prohibitive l_{0} norm with l_{1} norm.

Robust EPSI:

$$
\tilde{\mathbf{g}}=\underset{\mathbf{g}}{\operatorname{argmin}}\|\mathbf{g}\|_{\mathbf{1}} \text { s.t. }\|\mathbf{p}-\mathbf{M g}\|_{\mathbf{2}} \leq \sigma
$$

Nemeth, I999
Wang and Sacchi, 2007

Regularized least-squares migration

Regularized least-squares migration:

$$
\delta \tilde{\mathbf{m}}=\underset{\delta \mathbf{m}}{\operatorname{argmin}} \frac{1}{2}\|\mathbf{g}-\mathbf{K} \delta \mathbf{m}\|_{2}^{\mathbf{2}}+\lambda\|\delta \mathbf{m}\|_{\mathbf{2}}^{\mathbf{2}}
$$

Sparsity promoting migration

Sparsity-promoting migration:

$$
\delta \tilde{\mathbf{m}}=\mathbf{S}^{*} \underset{\delta \mathbf{x}}{\operatorname{argmin}}\|\delta \mathbf{x}\|_{\mathbf{1}} \text { s.t. }\left\|\mathbf{g}-\mathbf{K} \mathbf{S}^{*} \delta \mathbf{x}\right\|_{\mathbf{2}} \leq \sigma
$$

Combine EPSI with migration

We formulate this linearized inversion process as
$\delta \tilde{\mathbf{m}}=\mathbf{S}^{*} \underset{\delta \mathbf{x}}{\operatorname{argmin}}\|\delta \mathbf{x}\|_{\mathbf{1}}$ s.t. $\left\|\mathbf{D}-\mathbf{M K S}^{*} \delta \mathbf{x}\right\|_{\mathbf{2}} \leq \sigma$

Numerical experiments

Make linearized data:

- multiple-free data

$$
\mathbf{p}_{\mathbf{1}}=\mathbf{K} \delta \mathbf{m}
$$

- data with multiples

$$
\mathbf{p}_{\mathbf{2}}=\mathbf{M K} \delta \mathbf{m}
$$

Data preview: multiple free

total shots: 128 , shot number: 65

Image preview: multiple free

migrated section: time-weighted

Data preview: with multiples

total shots: 128 , shot number: 65

Image preview: with multiples

migrated section: time weighted

Three scenarios: mig-multiple free

Migration from multiple free data:

$$
\delta \tilde{\mathbf{m}}=\mathbf{S}^{*} \underset{\delta \mathbf{x}}{\operatorname{argmin}}\|\delta \mathbf{x}\|_{\mathbf{1}} \text { s.t. }\left\|\mathbf{p}_{\mathbf{1}}-\mathbf{K S}^{*} \delta \mathbf{x}\right\|_{\mathbf{2}} \leq \sigma
$$

Three scenarios: mig-with multiples

Migration from data with multiples:

$$
\delta \tilde{\mathbf{m}}=\mathbf{S}^{*} \underset{\delta \mathbf{x}}{\operatorname{argmin}}\|\delta \mathbf{x}\|_{1} \text { s.t. }\left\|\mathbf{p}_{2}-\mathbf{K S}^{*} \delta \mathbf{x}\right\|_{\mathbf{2}} \leq \sigma
$$

Three scenarios: mig/EPSI-with multiples

Migration combined with EPSI from data with multiples:
$\delta \tilde{\mathbf{m}}=\mathbf{S}^{*} \underset{\delta \mathbf{x}}{\operatorname{argmin}}\|\delta \mathbf{x}\|_{1}$ s.t. $\left\|\mathbf{p}_{\mathbf{2}}-\operatorname{MKS}^{*} \delta \mathbf{x}\right\|_{\mathbf{2}} \leq \sigma$
Solver: spgl|

Mig-multiple free

Mig-with multiples

Mig/EPSI-with multiples

Mig/EPSI-with multiples

Mig-multiple free

Convergence rate with/ without EPSI

De-migrated section

total shots: 128 , shot number: 65, SNR: 23 dB

Guitton, 2002

Mig-multiples

Mig/EPSI-multiples

Conclusions

By combing EPSI with migration:

- multiples are well handled
- multiples actually help imaging

Future plans

Alternating optimization

- now EPSI operator is built using a precalculated wavelet
- wavelet will be estimated during the imaging process

Incorporate into full-waveform inversion

References

Berkhout,A. J., and D. J.Verschuur, 2003,Transformation of multiples into primary reflections: SEG Technical Program Expanded Abstracts, 22, 19251928.

Guitton,A., 2002, Shot-profile migration of multiple reflec- tions: SEG Technical Program Expanded Abstracts, 21, 1296-1299.

Herrmann, F.J., 2008, Seismic wavefield inversion with curvelet-domain sparsity promotion, Presented at SEG.

Herrmann, F.J. and X. Li, Randomized dimensionality reduction for fullwaveform inversion: Presented at the 72nd EAGE Conference \& Exhibition.

Lin, T., and F.J. Herrmann, 2010, Stabilized estimation of primaries via sparse inversion: Presented at the 72nd EAGE Conference \& Exhibition.

Wang, J. and M. D. Sacchi, High-resolution wave-equation amplitude-variation-with-ray-parameter (AVP) imaging with sparseness constraints: Geophysics, 72, SII-SI8

References

Nemeth,T, C.Wu and G.T. Schuster, Least-squares migration of incomplete reflection data: Geophysics, 64, 208-22 I

Reiter, E. C., M. N.Toksö z, T. H. Keho, and G. M. Purdy, I99I, Imaging with deepwater multiples: Geophysics, 56,108I-I086.

Tarantola, A., I984, Inversion of seismic reflection data in the acoustic approximation: Geophysics, 49, I259-I 266.
van den Berg, E., and M. P. Friedlander, 2008, Probing the pareto frontier for basis pursuit solutions: SIAM Journal on Scientific Computing, 3I, 890-912.
van Groenestijn, G.J.A., and D.J.Verschuur, 2009, Estimation of primaries and near-offset reconstruction by sparse inversion: Marine data applications: Geophysics, 74, RII9- RI28.

Verschuur, D. J., I992, Adaptive surface-related multiple elimination: Geophysics, 57,1166.

Acknowledgement 17.

This work was in part financially supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant (22R81254) and the Collaborative Research and Development Grant DNOISE II (375142-08).

This research was carried out as part of the SINBAD II project with support from the following organizations: BG Group, BP, Chevron, ConocoPhillips, Petrobras, Total SA, and WesternGeco.
E. J. Candès, L. Demanet, D. L. Donoho, and L. Ying for CurveLab (www.curvelet.org)
E. van der Berg and M. Friedlander for SPGl1 (www.cs.ubc.ca/labs/scl/ spgl1/)

Thanks

slim.eos.ubc.ca

