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SUMMARY

Seismic imaging typically begins with the removal of multiple
energy in the data, out of fear that it may introduce erroneous
structure. However, seismic multiples have effectively seen
more of the earth’s structure, and if treated correctly can po-
tential supply more information to a seismic image compared
to primaries. Past approaches to accomplish this leave ample
room for improvement; they either require extensive modi-
fication to standard migration techniques, rely too much on
prior information, require extensive pre-processing, or resort
to full-waveform inversion. We take some valuable lessons
from these efforts and present a new approach balanced in
terms of ease of implementation, robustness, efficiency and
well-posedness, involving a sparsity-promoting inversion proce-
dure using standard Born migration and a data-driven multiple
modeling approach based on the focal transform.

INTRODUCTION

There are many arguments in favour of generating seismic im-
ages using multiples, provided that one can actually do it. As
multiples take roundtrips betwixt the earth’s subsurface it can
pierce beyond the first reflection and see more structural infor-
mation than the primary events that gave rise to it. Outside of
the zero-offset context, the multiples also provides wider illumi-
nation angles than primaries. Furthermore, after normalization
of the energy difference, multiples are by definition more sen-
sitive to velocity and reflectivity perturbations than primaries,
and under a pure informational context one can emphatically
argue that it’s consequently a more crucial ally to the interest of
deducing structural models of the subsurface. All this hinges,
of course, on the existence and feasibility of proper methods
that can extract this additional information, and manages to
avoid becoming confused by it.

Multiple reflections are notoriously fussy about how it is treated
in the context of seismic imaging, which is why the traditional
approach to migrating multiples always starts with its elimina-
tion. When sent directly into straightforward migration routines
devised under the assumptions of smooth background velocity
models and linearized perturbations, multiples end up as false,
spatially displaced copies of pre-existing events that conflict
with those corresponding to other primary reflections. Only in
the past fifteen years have successful attempts been made to
actually use them meaningfully in the imaging step.

At least in terms of surface-related multiples, there are three
emergent schools of methods to incorporate them as a part of
imaging (Verschuur, 2006). Firstly we can modify existing
migration techniques to bring multiples to the table. One can,
of course, model them directly by including free surfaces in
the background velocity model so the Green’s functions are
at least partially capable of describing the multiples (Reiter
et al., 1991). To do this one would have to give up the notion of
smooth background velocities, which amongst other drawbacks

also poses fairly stringent requirements on the calculation of
the Green’s functions. It also raises the question of how the
validity of linear perturbation assumption becomes affected by
the burden of explaining multiple events. If one were to take
advantage of the fact that primary events are sources of multi-
ple events then an alternative scheme similar to reverse-time
migration can be derived for the one-way setting (Berkhout and
Vershuur, 1994; Muijs et al., 2005; Guitton, 2002; Sheng, 2001).
Similar derivation for the two-way wave equation setting exists
but requires accurate knowledge of the boundary conditions of
the model before imaging (Youn and Zhou, 2001).

One can also follow the move towards waveform inversion.
We note that our problem on hand is a classic example of the
original motivations of Tarantola (1984) in his proposition to
unite all of seismic signal processing into one joint non-linear
inversion process. Doing this successfully requires the ability
to fully handle the complexities and difficulties associated with
full waveform inversion, making it an all-or-nothing approach.
Although FWI is arguably the future of seismic imaging, for
now it is likely to be out of the question if a migration-based
imaging is all one can afford.

Finally there is the approach that handles the primary-multiples
relationship in a more data-driven way, namely that of using
focal transforms (Berkhout and Verschuur, 2003). This method
has roots in interferometry principles, and relies on the fact
that a non-stationary convolution between the primary impulse
response and the upgoing wavefield reproduces the multiples
itself. By applying the pseudoinverse of the primary impulse re-
sponse to the total data (followed by suitable time-shifting and
windowing) one can transform the first multiples into primaries,
while mapping the original primaries back to the source. Migra-
tion is then done on the newly crafted multiples after applying
more traditional de-multiple techniques. While requiring little
prior knowledge, this technique must be carried out over several
iterative steps that may introduce compounding errors at each
step.

Here we present a method to image multiples that takes advan-
tageous elements from all these approaches. We start with the
traditional least-squares migration using smooth background
velocities and linearized reflectivity. The multiple informa-
tion is then added using an evolution of the focal transform,
which is a recent method in primary estimation proposed by
van Groenestijn and Verschuur (2009). To tie it all up and bring
stability to the process, we combine the two operation in a joint
sparsity-regulated inversion process in the spirit of Tarantola,
with the important distinction that our inversion problem is less
ambitious in scale and linear in nature. We believe our approach
takes the right compromise between the different methods to ar-
rive at formulation balanced in terms of ease of implementation,
robustness, efficiency and well-posedness.

The following sections begin with separate background discus-
sions, respectively, on a sparsity-promoting primary estimation



method and the Born-scattering based least-squares migration.
We will note how both methods combine to naturally lead to a
sparsity-promoting linear inversion that images from the total
upgoing data. This will in turn lead to a discussion on a way to
efficiently carry out the inversion using modern optimization
techniques based on pure gradient steps that minimizes ¢ -norm
objectives. Finally, we will show numerical examples of this
inversion scheme for synthetic data.

TRANSFORMING PRIMARIES INTO MULTIPLES

Currently in seismic literature there are some interesting non-
imaging techniques similarly aimed at extracting additional
information from multiples. One that stands out among them is
a method called Estimation of Primaries from Sparse Inversion
(EPSI), which is particularly of interest to us (van Groenestijn
and Verschuur, 2009). EPSI is essentially a scheme that simulta-
neous solves for the (surface-related) primary impulse-response
and the source-wavelet signature, by an Amundsen-type in-
version from an operator that models total upgoing field data
from the primary impulse-response. This modeling operator
is essentially the focal transform run backwards, making EPSI
likewise a data-driven method.

The EPSI approach has several benefits: Firstly, due to the
wavefield inversion context, EPSI will attempt to minimize the
energy of the modeling residual, taken over the entire dataset.
This is contrary to prediction-subtraction based techniques,
where the minimization is over the energy of the data minus
the predictions, possibly corrupting primary energy in the pro-
cess. Furthermore, the data-driven approach is agnostic to an
inherent assumption of a certain periodicity range, and is consid-
ered more robust compared to wave-equation based techniques.
Thanks to a formulation that allows simultaneous inversion of
various variables, it is also possible for EPSI to infer missing-
near offset traces from the multiple data. The spirit of extract-
ing information from multiples is epitomized by this last point;
starting with just the multiple data itself, we can obtain esti-
mates of the source wavelet and any missing near-offset traces,
armed with nothing more than a convolution-based relation of
the primaries and the multiple wavefield.

EPSI in an optimization context
The EPSI modeling operator is formulated from the same under-
lying principle as the focal transform, namely the non-stationary
transform relation, which relates the primary impulse response
to the total up-going wavefield that includes the source signa-
ture and surface-related multiples. We can describe this in a
discretized setting if we introduce the notion of monochromatic
slices of wavefields arranged into a matrix that have columns
representing common shot gathers, similar to the detail-hiding
notation of Berkhout and Pao (1982), such that the matrix
multiplication of two hatted wavefield quantities become non-
stationary convolutions in the time domain. With this notation,
we can write

P=G(Q+RP), 0]
where G represents the primary impulse response, P the total
up-going wavefield, and Q a (possibly shot-dependent) source
signature function. Hatted quantities represent monochromatic
variables. R is the reflection coefficient at the surface that is
approximated to —I for the rest of this text.

As foreshadowed, EPSI involves solving an inverse problem.
In order facilitate further discussion of this we now try to math-
ematically reformulate EPSI to be consistent with the usual
notations of general optimization problems, i.e. the canonical
form of solving for an unknown vector quantity x from a vector
observation b, using the relationship Ax = b where A is some
linear operator. This is usually accomplished by minimizing
some objective ||b — Ax|| plus additional regularization terms
onx.

By introducing the convention of vectorized wavefields in lower
case, e.g. p = vec(P), we can then express Eq. 1 in terms
of a linear operator M acting on vectorized primary impulse
response g:

Mg := % BlockDiag/[(Q— P )* @Il Zg=p, (2)

where the block diagonal elements varies over frequency. ®
defines a Kronecker product that, in this case, helps reformu-
late matrix multiplication into matrix-vector products. .% is a
Fourier transform in the time axis that also organized the dif-
ferent monochromatic wavefields in a vectorized manner, such
that #ig =g := [&/1,8p, ...,gfn]T, while the adjoint operation
F{ on the left brings the wavefield back to the time domain.
Note that M is a simple linear operator that depends both on a
source signature estimate Q and the (recorded) up going wave-
field P. In most cases Q is an unknown quantity that must be
explicitly inverted for at the same time as g. However, in this
abstract we are mainly interested in the interplay between the
EPSI modeling operator and a migration operator, and in order
to focus on that aspect we will assume from now on Q to be
known to an appropriate accuracy.

EPSI states that a reasonable estimate of the primary impulse re-
sponse can be obtained by a steepest-descent inversion process.
The gradients of the objective function f(g) = ||p — Mg|13, is
evaluated at g (an estimate on g) according to

flg=2(p—Mg)M". 3)

A sparse update 68 on g is then obtained by picking the 7-th
largest elements of the gradient and setting the rest to zero,
followed by a scaling factor determined by a simple line search.
The next update will then be calculated on the gradient of (g +
08). The process is repeatedly carried out until a desired image
of the primary is formed. The typical number of iterations
required for convergence is claimed by the authors to be on the
neighborhood of 100.

Since steepest decent methods belong to the class of gradient
methods in optimization, it is beneficial to look at EPSI in terms
of an optimization instance. The goal of EPSI is to solve an
instance of the following non-convex optimization problem:

g= argénin [p—Mglla subjectto [|gllo <k, (4)
where k is the number of iterations taken in the EPSI process.

The ¢y pseudonorm ||g||o measures the cardinality — the number
of non-zero elements, or in other words the sparsity —in g.

Dealing with an ¢y measure in optimization is famously difficult,
since uniqueness and existence of a solution cannot be proved



in general and no method outside of combinatorial searches
are guarenteed to yield the optimal solution. All these prob-
lems are inherent in the original formulation of EPSI as well.
EPSI works around this limitation by severely limiting the
size of the feasible set at every iteration, such as imposing con-
straint || 68||o = 7, so that the update making the largest possible
progress to the minimization objective in Eq. 4 can be found
by simple searching over the whole set, i.e. zeroing everything
in the gradient except the 7-th largest elements. Note that fi-
nal solution by definition will remain feasible for the original
constraint ||g||o < k.

Instead of using various regularizations on the update to stabi-
lize the ill-posed EPSI problem, one can postulate a similar but
much more tractable problem by performing a convexification
(Lin and Herrmann, 2010). A very well-known strategy when
tackling cardinality-constrained problems is to replace the £,
term with the ¢; norm |/g||;, the sum over the element-wise
absolute value of g, leading to

g:argéninHPfMgHz subjectto |lg|l; <7, (5)

where the 7 in this expression is overloaded to be an ¢; norm
constraint on the model. Since taking an ¢;-norm is a convex
function, this formulation of EPSI is also convex. Convexity
is a desirable property, because convex problems in general
are stable with no local minima in the objective function. A
useful consequence of a convex EPSI formulation is that we are
allowed to exploit a well known duality result (van den Berg
and Friedlander, 2008) to associate a certain value of 7 in eq. 5
with a certain value of ¢ in the following problem:

g= argénin\lglh subjectto [p—Mgl2 <o, (6)
such that both problems lead to the same solution. Here & is
seen as the residual between the recorded data and the total
up-going wavefield predicted by the estimated primaries, which
is highly linked to the noise level of the shot record. Due to
its physical significance, a good estimate for o should be more
easily determined compared to 7.

SPARSITY-PROMOTING MIGRATION

EPSI is an ideal preprocessing step for migration-based imag-
ing because it removes both multiple information and source
signatures in one fell swoop. Because these difficult to deal
with artifacts are removed, one can have a lot of freedom in
choosing a suitably simple migration routine, for example the
venerable Kirchoff migration. However, we will now point out
that with a suitable choice of migration methods we might get
an additional boost from EPSI.

Our starting is a migration technique that similarly requires an
inversion process: least-squares migration from the linearized
Born scattering operator. We are interested in the linearized
reflectivity dm, which under the linearized Born operator J
produces a linearized scattered wavefield b. Now assuming that
our primary impulse response g ~ b is a good approximation
for the primary impulse response, we may image the reflectivity
by solving the following regularized least-squares problem:

1
5ﬁ1:argminEHg—J8mH%+lH5mH%, @)
sm

for some ¢,-norm regularization parameter A.

By entering once again into the inversion context we can then
appeal to an old observations in seismic inversion: subsurface
reflection events rarely occur in a Gaussian-distribution fashion,
which the ¢,-norm regularization assumes. Rather, the singular-
ities distribution should be assumed to have Laplacian priors,
which calls instead for an ¢;-norm regularization term (Menke,
1989). We can rewrite this ¢;-norm regularization term in con-
straint form similar to eq. 5, and use the same duality result
used to derive eq. 6 to arrive at the following ¢;-regularized
formulation:

o = argmin||0m||; subjectto |g—Jém|, <o, (8)
sm

where we override o from eq. 6.

Equation 8 hints to where we can use the EPSI modeling opera-
tor to our benefit. The trick is to setup the operator M as a type
of left pre-conditioner for J. Together with eq. 2 we can finally
arrive at

o = argmin ||dm||; subjectto ||p—MJéml; <o, (9)
ém

where o is again overridden for the last time, and p is again the
total upgoing wavefield. Due to the close link of the £;-norm to
the degree of sparsity (¢;-norm minimizing is often called spar-
sity promoting), this optimization problem now poses a phys-
ically intuitive question: Given a particular confidence/noise-
level in our total recorded upgoing data, find the sparsest set of
linearized reflectivity that explains this data wavefield, includ-
ing the surface-related multiple reflections.

We are not certain whether using M as a pre-conditioner actually
improves the numerical conditioning of the system. Instead, we
make an observation of the two very significant advantages of
this method:

1. Using nothing more than a purely data driven model for
the surface-related multiples, and a relatively standard
migration technique, we arrived at a straightforward
way to image from data “contaminated” with multiples
and the source signature.

2. The ¢;-norm minimization form of inverting M and J
(eqns. 6 and 8) are derived from different arguments,
but both with the goal of inversion stability and well-
posedness. We therefore expect our inversion formula-
tion in eq. 9 to behave in a stable fashion as well.

3. Because it takes into account multiple information, MJ
should be more sensitive to image model perturbations
Om than J alone. Provided that the inversion is car-
ried out stably (see point 2), eq. 9 should recover more
structural information than eq. 8, converge faster, or
both.

To backup the claims made in points (2) and (3), we devise
a numerical example using linearized data generated from a
synthetic salt dome marine model with a relatively shallow
water depth, preceded by a short discussion of feasible and
affordable methods for ¢1-norm minimization.



NUMERICAL EXAMPLES

Efficient gradient methods for /; problems

‘We now address the issue of realistically and efficiently carrying
out the /;-norm minimization problems posed in eqns. 6, 8, and
9. Gradient-based methods, while maintaining the comfortable
form of steepest-descent, often perform poorly due to the inher-
ent non-differentiability of the ¢; norm. Traditional approaches
to ¢ type problems almost always involve recasting it to an
equivalent linear programming problem, solved with either the
simplex method or more modernly a interior-point type method.
Both of these approaches involves dealing directly with the
linear operator in question (e.g., MJ for our case), which is
prohibitively expensive with the size of these operators involved
in imaging form real-world data.

Thankfully, due to the recent interests in compressive sens-
ing and sparsity-promoting algorithms in general (mostly in
other fields such as medical imaging and machine learning),
some practical methods applicable to very large data have lately
emerged. This includes several gradient-based methods, which
work around the non-differentiability in differing and clever
ways without resorting to subgradient-type (often slow to con-
verge) approaches. Of interest to us is the SPG¢; method
(van den Berg and Friedlander, 2008), which uses Pareto root-
finding schemes to determine a suitable 7 that solves problems
of type eq. 5 to give an identical solution to solving problems
of type eq. 6 for a certain 6. We note that this method requires
the least amount of gradient evaluations out of all currently
available methods (Becker et al., 2009), while rarely requiring
line searches. Anecdotally we can claim that solving eq. 6 for
sizable wavefields rarely requires over 100 gradient evaluations.

Imaging from synthetic marine model

We present in Figure 1 some imaging results from linearized
data. The background velocity model is a synthetic salt dome
shown in 1a with the first layer being a 200m deep water layer,
and the receiver and shot spacing is 10m. A reference linearized
reflectivity 6m is obtained by taking the derivative in the depth
direction, and the background velocity is obtain with a 10-
point averaging filter. Time domain FD forward modeling is
done for the P term used in M with df = 6ms for 1.5s, using
a Ricker source wavelet with maximum frequency at 60Hz
and dominant frequency near 30Hz. Linear data generation
and the subsequent modeling step are done in the frequency
domain using 15 randomly selected frequencies. The inversion
is carried out using SPG/;. 1b shows the solution of eq. 8 using
J to generate b from dm. 1c shows the solution of eq. 9 using
MJ to generate p from dm. 1d shows the result of solving eq. 8
using the p from 1c as input. All the above are solved using
140 gradient evaluations. 1e and 1f show the imaging results of
1b and 1c using a quarter of the evaluation costs (30 gradient
evaluations).
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Figure 1: (a) Reference velocity model, (b) imaging from lin-
earized data with straightforward migration, (c¢) imaging from
linearized data with multiples using our scheme, (d) imaging
from linearized data with multiples using straightforward mi-
gration, note the false events inside the model and the generally
lower image quality.(e) and (f) are respectively (b) and (c) using
a quarter of the evaluation cost.
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