Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2010 SLIM group @ The University of British Columbia.

Full-waveform inversion from compressively recovered updates

Xiang Li and Felix J. Herrmann

Tuesday, October 19, 2010

Motivation

Curse of dimensionality for d>2

- Exponentially increasing data volumes
- Helmholtz requires implicit solvers to address bandwidth
- Computational complexity grows linearly with # RHS's
- Makes computation of the misfit functional & gradients prohibitively expensive

Wish list

An *inversion* technology that

- is based on a time-harmonic PDE solver, which is easily parallelizable, and scalable to 3D
- does not require multiple iterations with all data
- removes the linearly increasing costs of implicit solvers for increasing numbers of frequencies & RHS's
- produces high-resolution inversion results

Key technologies

Simultaneous sources & phase encoding [Morton, '98, Romero, '00]

• supershots [Krebs et.al., '09, Operto et. al., '09, Herrmann et.al., '08-10']

Stochastic optimization & machine learning [Bertsekas, '96]

• stochastic gradient decent

Compressive sensing [Candès et.al, Donoho, '06]

• sparse recovery & randomized subsampling

[Nemeth et. al. '99]

Imaging

Least-squares migration:

$$\delta \widetilde{\mathbf{m}} = \underset{\delta \mathbf{m}}{\arg\min} \frac{1}{2} \| \delta \mathbf{d} - \nabla \mathcal{F}[\mathbf{m}_0; \mathbf{Q}] \delta \mathbf{m} \|_2^2$$

$$\delta \mathbf{d}$$
 = Multi-source multi-frequency data residue

- $\nabla \mathcal{F}[\mathbf{m}_0; \mathbf{Q}]$ = Linearized Born-scattering operator
 - \mathbf{m}_0 = Background velocity model
 - \mathbf{Q} = Sources
 - $\delta \tilde{\mathbf{m}} = \text{image}$

Phase encoding

Simultaneous source

Randomized amplitudes along the shot line

SLIM 🛃

Create supershot via superposition

[Morton, '98, Romero, '00]

Tuesday, October 19, 2010

Simultaneous-source image

SLIM 🛃

[Morton, '98, Romero, '00]

[Herrmann et. al. '08-'10]

Supershot

Collection of K simultaneous-source experiments with batch size $K \ll n_f \times n_s$

Phase encoding

Least-squares migration:

$$\delta \widetilde{\mathbf{m}} = \underset{\delta \mathbf{m}}{\arg\min} \frac{1}{2} \| \delta \underline{\mathbf{d}} - \nabla \mathcal{F}[\mathbf{m}_0; \underline{\mathbf{Q}}] \delta \mathbf{m} \|_2^2$$

- $\delta \underline{\mathbf{d}} = \mathbf{Simultaneous}$ -source data residue
 - $\mathbf{Q} = \mathbf{Simultaneous}$ sources

[Wang & Sacchi, '07]

Sparse recovery

Least-squares migration with sparsity promotion

$$\delta \widetilde{\mathbf{m}} = \mathbf{S}^* \arg\min_{\delta \mathbf{x}} \frac{1}{2} \|\delta \mathbf{x}\|_{\boldsymbol{\ell}_1} \quad \text{subject to} \quad \|\boldsymbol{\delta} \underline{\mathbf{d}} - \nabla \boldsymbol{\mathcal{F}}[\mathbf{m}_0; \underline{\mathbf{Q}}] \mathbf{S}^* \delta \mathbf{x}\|_2 \leq \sigma$$

SLIM 🛃

 $\delta \mathbf{x} = \mathbf{Sparse}$ curvelet-coefficient vector

$$S^* = Curvelet$$
 synthesis

leads to significant speedup as long as

$$n_{PDE}^{\ell_1} \times K \ll n_{PDE}^{\ell_2} \times n_f \times n_s$$

Experiment

Linearized sparsity promoting least-squares migration

- Marmousi model (128x256) with grid size 15 m
- use different
 - # of simultaneous shots (50, 20, 10)
 - # of frequencies (10, 10, 5)

Initial model

Linearized sparse inversion

30 simultaneous shots 10 random frequencies

true reflectivity

sparse recovery with wavelets

Linearized sparse inversion

20 simultaneous shots 10 random frequencies

true reflectivity

sparse recovery with wavelets

Linearized sparse inversion

10 simultaneous shots 5 random frequencies

true reflectivity

sparse recovery with wavelets

Linearized sparse inversion

Subsample ratio	0.015	0.006	0.002
n_f'/n_s'	recovery error (dB)		
5	17.44 (1.32)	11.66 (0.78)	6.83 (-0.14)
1	17.53 (1.59)	11.89 (1.05)	7.19 (0.15)
0.2	18.22 (1.68)	12.11 (1.32)	7.46 (0.27)
Speed up (\times)	66	166	500

SNRs for "migration" in parentheses

Tuesday, October 19, 2010

Observations

Reconstruct model updates

from randomized subsamplings

with correct amplitudes
 (like Gauss-Newton updates)

Recovery quality depends on degree of subsampling

Significant speedups attainable...

FWI formulation

Multiexperiment unconstrained optimization problem:

 $\min_{\mathbf{m}\in\mathcal{M}}\frac{1}{2}\|\mathbf{D}-\mathcal{F}[\mathbf{m};\mathbf{Q}]\|_{2,2}^2 \quad \text{with} \quad \mathcal{F}[\mathbf{m};\mathbf{Q}]:=\mathbf{P}\mathbf{H}^{-1}\mathbf{Q}$

- requires large number of PDE solves
- linear in the sources
- apply randomized dimensionality reduction

[Tarantola, 84; Pratt, '98; Plessix, 06] [Haber, Chung, and Herrmann, '10]

Gauss-Newton

Algorithm 1: Gauss Newton

Result: Output estimate for the model **m** $\mathbf{m} \leftarrow \mathbf{m}_0; k \leftarrow 0;$ // initial model while not converged **do** $| \mathbf{p}^k \leftarrow \arg\min_{\mathbf{p}} \frac{1}{2} || \delta \mathbf{d} - \nabla \mathcal{F}[\mathbf{m}^k; \mathbf{Q}] \mathbf{p} ||_2^2 + \lambda^k ||\mathbf{p}||_2^2;$ // search dir. $\mathbf{m}^{k+1} \leftarrow \mathbf{m}^k + \gamma^k \mathbf{p}^k;$ // update with linesearch $k \leftarrow k+1;$ end

FWI with phase encoding

Multiexperiment unconstrained optimization problem:

 $\min_{\mathbf{m}\in\mathcal{M}}\frac{1}{2}\|\mathbf{D}-\mathcal{F}[\mathbf{m};\mathbf{Q}]\|_{2,2}^{2} \quad \text{with} \quad \mathcal{F}[\mathbf{m};\mathbf{Q}]:=\mathbf{P}\mathbf{H}^{-1}\mathbf{Q}$

- requires smaller number of PDE solves
- exploits linearity in the sources & block-diagonal structure of the Helmholtz system
- uses randomized frequency selection and phase encoding

[Krebs et.al., '09, Operto et. al., '09; Herrmann et. al. '08-'10]

Renewals

Use different simultaneous shots for each subproblem, i.e.,

 \mapsto

SLIM 🛃

Requires fewer PDE solves for each GN subproblem...

- motivated by stochastic approximation [Nemirovski, '09]
- related to Kaczmarz ('37) method applied by Natterer, '01
- supersedes ad hoc approach by Krebs et.al., 2009

Phase encoding

Algorithm 1: Gauss Newton with renewed phase encodings

Result: Output estimate for the model **m** $\mathbf{m} \leftarrow \mathbf{m}_0; k \leftarrow 0;$ // initial model while not converged **do** $\begin{vmatrix} \mathbf{p}^k \leftarrow \arg\min_{\mathbf{p}} \frac{1}{2} \| \delta \mathbf{d}^k - \nabla \mathcal{F}[\mathbf{m}^k; \mathbf{Q}^k] \mathbf{p} \|_2^2 + \lambda^k \| \mathbf{p} \|_2^2;$ // search dir. $\mathbf{m}^{k+1} \leftarrow \mathbf{m}^k + \gamma^k \mathbf{p}^k;$ // update with linesearch $k \leftarrow k+1;$ end

Observations

Stochastic optimization

- introduces noisy search directions
- interferences go down slowly as batch size increases
- requires averaging over previous model updates

Formulation does not exploit sparsity on the model

[Bertsekas, '96] [Krebs et.al, '09]

Sparse Linearized inversion

SLIM 🛃

Suggests that sparsity promotion recovers search directions accurately from randomized source encoding

Our approach

Leverage findings from sparse recovery & compressive sensing

- consider each phase-encoded Gauss-Newton update as separate compressive-sensing experiment
- remove interferences by curvelet-domain sparsity promotion
- exploit properties of the Pareto curve

[Candes et al., '06; Donoho, '06] [Demanet et. al. '07; Herrmann & Li, '08-'09]

Compressive updates

Algorithm 1: Gauss Newton with sparse updates

Result: Output estimate for the model **m**

$$\mathbf{m} \leftarrow \mathbf{m}_0; k \leftarrow 0;$$
 // initial model
while not converged **do**
 $\begin{vmatrix} \mathbf{p}^k \leftarrow \mathbf{S}^* \arg\min_{\mathbf{x}} \frac{1}{2} \| \delta \underline{\mathbf{d}}^k - \nabla \mathcal{F}[\mathbf{m}^k; \underline{\mathbf{Q}}^k] \mathbf{S}^* \mathbf{x} \|_2^2 \quad \text{s.t.} \quad \|\mathbf{x}\|_1 \leq \tau^k$
 $\mathbf{m}^{k+1} \leftarrow \mathbf{m}^k + \gamma^k \mathbf{p}^k;$ // update with linesearch
 $k \leftarrow k+1;$
end

[van den Berg & Friedlander, '08]

Example

Marmousi model:

- 128x384 with a mesh size of 24 meters
- 384 co-located shots and receivers with offset = 3 X depth
- 2.4s recording time

Explicit Time-harmonic Helmholtz solver

- 9-point finite difference
- Absorbing boundary condition

Example

FWI specs:

- Committed inversion crime
- Frequency continuation over 10 bands
- 15 simultaneous shots with 10 frequencies each

$$K = 10 \times 15 \ll 100 \times 384$$

True model

Initial model

Inverted model

True model

Inverted model

True model

Difference

Performance

Remember per subproblem

$$n_{PDE}^{\ell_1} \times K \ll n_{PDE}^{\ell_2} \times n_f \times n_s$$

SPEEDUP of 13 X

Conclusions

Because Compressive Sensing does not rely on averaging but on sparsity, our approach is a viable alternative to the stochastic approximation

Sparse recoveries offset random interferences due to source encoding

SLIM +

Hight-quality & high-resolution inversions have been achieved with significant accelerations

No need for additional migration step

Improvements come from sparsity promotion & curvelets

Indications that the curse of dimensionality can be removed...

Future plans

Investigate

- Noise sensitivity
- continuation with batch size (ref latest paper with Haber)
- explore multiscale structure of curvelets
- incomplete data
- extension to 3D

Acknowledgments

This work was in part financially supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant (22R81254) and the Collaborative Research and Development Grant DNOISE (375142-08).

We also would like to thank the authors of CurveLab.

This research was carried out as part of the SINBAD II project with support from the following organizations: BG Group, BP, Chevron, ConocoPhillips, Petrobras, Total SA, and WesternGeco.

Thank you

<u>slim.eos.ubc.ca</u>

Tuesday, October 19, 2010

Further reading

Compressive sensing

- Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information by Candes, 06.
- Compressed Sensing by D. Donoho, '06
- Curvelets and Wave Atoms for Mirror-Extended Images by L. Demanet, L. Ying, 07.

Simultaneous acquisition

- A new look at simultaneous sources by Beasley et. al., '98.
- Changing the mindset in seismic data acquisition by Berkhout '08.

Simultaneous simulations, imaging, and full-wave inversion:

- Faster shot-record depth migrations using phase encoding by Morton & Ober, '98.
- Phase encoding of shot records in prestack migration by Romero et. al., '00.
- Efficient Seismic Forward Modeling using Simultaneous Random Sources and Sparsity by N. Neelamani et. al., '08.
- Compressive simultaneous full-waveform simulation by FJH et. al., '09.
- Fast full-wavefield seismic inversion using encoded sources by Krebs et. al., '09
- Randomized dimensionality reduction for full-waveform inversion by FJH & X. Li, '10

Stochastic optimization and machine learning:

- A Stochastic Approximation Method by Robbins and Monro, 1951
- Neuro-Dynamic Programming by Bertsekas, '96
- Robust stochastic approximation approach to stochastic programming by Nemirovski et. al., '09
- Stochastic Approximation and Recursive Algorithms and Applications by Kushner and Lin
- Stochastic Approximation approach to Stochastic Programming by Nemirovski
- An effective method for parameter estimation with PDE constraints with multiple right hand sides. by Eldad Haber, Matthias Chung, and Felix J. Herrmann. '10