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Motivation
Curse of dimensionality for d>2

• Exponentially increasing data volumes

• Helmholtz requires implicit solvers to address bandwidth

• Computational complexity grows linearly with # RHS’s

• Makes computation of the misfit functional & gradients 
prohibitively expensive

Tuesday, October 19, 2010



SLIM

Wish list
An inversion technology that 

• is based on a time-harmonic PDE solver, which is easily 
parallelizable, and scalable to 3D 

• does not require multiple iterations with all data

• removes the linearly increasing costs of implicit solvers for 
increasing numbers of frequencies & RHS’s

• produces high-resolution inversion results
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Key technologies

Simultaneous sources & phase encoding 

• supershots

Stochastic optimization & machine learning [Bertsekas, ’96]

• stochastic gradient decent

Compressive sensing [Candès et.al, Donoho, ’06]

• sparse recovery & randomized subsampling 

[Krebs et.al., ’09, Operto et. al., ’09, Herrmann et.al., ’08-10’] 

[Beasley, ’98, Berkhout, ’08]

[Morton, ’98, Romero, ’00]
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Imaging
Least-squares migration:

δ �m = arg min
δm

1
2
�δd−∇F [m0;Q]δm�22

δd = Multi-source multi-frequency data residue

∇F [m0;Q] = Linearized Born-scattering operator

m0 = Background velocity model

Q = Sources

δm̃ = image

[Nemeth et. al. ’99]
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Simultaneous source Randomized amplitudes
 along the shot line

Phase encoding

Create supershot via superposition
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[Morton, ’98, Romero, ’00]
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Sequential-source
wavefield

Simultaneous shot
at 5 Hz

Simultaneous-source
wavefield
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SLIMImage
at 5 Hz
Sequential-source

image
Simultaneous-source

image
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[Morton, ’98, Romero, ’00]
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Supershot

Collection of K simultaneous-source experiments with batch 
size

Q Q = RMQ

K � nf × ns

[Herrmann et. al.  ’08-’10]

adapted from Herrmann et. al. ,09

Tuesday, October 19, 2010



SLIM

Phase encoding
Least-squares migration:

δ �m = arg min
δm

1
2
�δd−∇F [m0;Q]δm�22

δd = Simultaneous-source data residue
Q = Simultaneous sources
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Sparse recovery
Least-squares migration with sparsity promotion

leads to significant speedup as long as

δx = Sparse curvelet-coefficient vector
S∗ = Curvelet synthesis

δ �m = S∗ arg min
δx

1
2
�δx��1 subject to �δd−∇F [m0;Q]S∗δx�2 ≤ σ

n�1
PDE ×K � n�2

PDE × nf × ns

[Wang & Sacchi, ’07]
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Experiment
Linearized sparsity promoting least-squares migration

• Marmousi model (128x256) with grid size 15 m

• use different 

‣ # of simultaneous shots (50, 20,10) 

‣ # of frequencies (10, 10, 5)
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Initial model
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Subsample ratio 0.015 0.006 0.002

n�
f/n�

s recovery error (dB)

5 17.44 (1.32) 11.66 (0.78) 6.83 (-0.14)
1 17.53 (1.59) 11.89 (1.05) 7.19 (0.15)
0.2 18.22 (1.68) 12.11 (1.32) 7.46 (0.27)

Speed up (×) 66 166 500

Linearized sparse 
inversion

SNRs for “migration” in parentheses
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Observations
Reconstruct model updates

‣ from randomized subsamplings

‣ with correct amplitudes 
(like Gauss-Newton updates)

Recovery quality depends on degree of subsampling

Significant speedups attainable...
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FWI formulation
Multiexperiment unconstrained optimization problem:

• requires large number of PDE solves

• linear in the sources

• apply randomized dimensionality reduction

min
m∈M

1
2
�D−F [m;Q]�2

2,2 with F [m;Q] := PH
−1

Q

[Tarantola, 84; Pratt, ’98; Plessix, 06] 
[Haber, Chung, and Herrmann, ’10]
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Gauss-Newton

Algorithm 1: Gauss Newton

Result: Output estimate for the model m
m ←− m0; k ←− 0 ; // initial model

while not converged do
pk ←− argminp

1
2�δd−∇F [mk;Q]p�22 + λk�p�22 ; // search dir.

mk+1 ←− mk + γkpk ; // update with linesearch

k ←− k + 1;

end
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FWI with phase 
encoding

Multiexperiment unconstrained optimization problem:

• requires smaller number of PDE solves

• exploits linearity in the sources & block-diagonal structure 
of the Helmholtz system

• uses randomized frequency selection and phase encoding

min
m∈M

1
2
�D−F [m;Q]�2

2,2 with F [m;Q] := PH
−1

Q

 [Krebs et.al., ’09, Operto et. al., ’09 ; Herrmann et. al. ’08-’10]
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Renewals
Use different simultaneous shots for each subproblem, i.e.,

Requires fewer PDE solves for each GN subproblem...

• motivated by stochastic approximation

• related to Kaczmarz (’37) method applied by Natterer, ‘01

• supersedes ad hoc approach by Krebs et.al., 2009

[Nemirovski, ’09]

Q �→ Qk
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Phase encoding

Algorithm 1: Gauss Newton with renewed phase encodings

Result: Output estimate for the model m
m ←− m0; k ←− 0 ; // initial model

while not converged do
pk ←− arg minp

1
2�δd

k −∇F [mk;Qk
]p�22 + λk�p�22 ; // search dir.

mk+1 ←−mk + γkpk ; // update with linesearch

k ←− k + 1;

end
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Observations
Stochastic optimization 

• introduces noisy search directions

• interferences go down slowly as batch size increases

• requires averaging over previous model updates

Formulation does not exploit sparsity on the model

[Bertsekas, ’96]
[Krebs et.al, ’09]
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Linearized inversion

Suggests that sparsity promotion recovers search directions 
accurately from randomized source encoding
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Our approach
Leverage findings from sparse recovery & compressive sensing

• consider each phase-encoded Gauss-Newton update as 
separate compressive-sensing experiment

• remove interferences by curvelet-domain sparsity 
promotion

• exploit properties of the Pareto curve

[Candes et al., ’06; Donoho, ’06]
[Demanet et. al. ’07; Herrmann & Li, ’08-’09]
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Compressive 
updates

Algorithm 1: Gauss Newton with sparse updates

Result: Output estimate for the model m
m ←− m0; k ←− 0 ; // initial model

while not converged do
pk ←− S∗ arg minx

1
2�δd

k −∇F [mk;Qk
]S∗x�22 s.t. �x�1 ≤ τk

mk+1 ←−mk + γkpk ; // update with linesearch

k ←− k + 1;

end

[van den Berg & Friedlander, ’08]
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Example
Marmousi model:

• 128x384 with a mesh size of 24 meters

• 384 co-located shots and receivers with offset = 3 X depth

• 2.4s recording time

Explicit Time-harmonic Helmholtz solver

• 9-point finite difference

• Absorbing boundary condition
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Example
FWI specs:

• Committed inversion crime

• Frequency continuation over 10 bands

• 15 simultaneous shots with 10 frequencies each

K = 10× 15� 100× 384
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True model
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Initial model
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Inverted model
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True model
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Initial model
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Inverted model
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True model
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Difference
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Performance
Remember per subproblem

                                     versus

SPEEDUP of 13 X

n�1
PDE ×K � n�2

PDE × nf × ns

n�1
PDE ≈ 200

K = 150
n�2

PDE ≈ 10
K = 38400
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Conclusions
Because Compressive Sensing does not rely on averaging but on 
sparsity, our approach is a viable alternative to the stochastic 
approximation

Sparse recoveries offset random interferences due to source encoding

Hight-quality & high-resolution inversions have been achieved with 
significant accelerations

No need for additional migration step

Improvements come from sparsity promotion & curvelets

Indications that the curse of dimensionality can be removed...
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Future plans
Investigate

• Noise sensitivity

• continuation with batch size (ref latest paper with Haber)

• explore multiscale structure of curvelets

• incomplete data

• extension to 3D
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Thank you

slim.eos.ubc.ca
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Further reading
Compressive sensing

– Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information by Candes, 06.

– Compressed Sensing by D. Donoho, ’06
– Curvelets and Wave Atoms for Mirror-Extended Images by L. Demanet, L. Ying, 07.

Simultaneous acquisition

– A new look at simultaneous sources by Beasley et. al., ’98.
– Changing the mindset in seismic data acquisition by Berkhout ’08.

Simultaneous simulations, imaging, and full-wave inversion:

– Faster shot-record depth migrations using phase encoding by Morton & Ober, ’98.
– Phase encoding of shot records in prestack migration by Romero et. al., ’00.

– Efficient Seismic Forward Modeling using Simultaneous Random Sources and Sparsity by N. Neelamani et. al., ’08.

– Compressive simultaneous full-waveform simulation by FJH et. al., ’09.
– Fast full-wavefield seismic inversion using encoded sources by Krebs et. al., ’09

– Randomized dimensionality reduction for full-waveform inversion by FJH & X. Li, ’10

 Stochastic optimization and machine learning:

– A Stochastic Approximation Method by Robbins and Monro, 1951

– Neuro-Dynamic Programming by Bertsekas, ’96
– Robust stochastic approximation approach to stochastic programming by Nemirovski et. al., ’09

– Stochastic Approximation and Recursive Algorithms and Applications by Kushner and Lin
– Stochastic Approximation approach to Stochastic Programming by Nemirovski

– An effective method for parameter estimation with PDE constraints with multiple right hand sides. by Eldad Haber, Matthias Chung, 
and Felix J. Herrmann. ’10
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