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SUMMARY

Full-waveform inversion relies on the collection of large multi-
experiment data volumes in combination with a sophisticated
back-end to create high-fidelity inversion results. While im-
provements in acquisition and inversion have been extremely
successful, the current trend of incessantly pushing for higher
quality models in increasingly complicated regions of the Earth
reveals fundamental shortcomings in our ability to handle in-
creasing problem size numerically. Two main culprits can be
identified. First, there is the so-called “curse of dimensionality”
exemplified by Nyquist’s sampling criterion, which puts dispro-
portionate strain on current acquisition and processing systems
as the size and desired resolution increases. Secondly, there is
the recent “departure from Moore’s law” that forces us to lower
our expectations to compute ourselves out of this. In this paper,
we address this situation by randomized dimensionality reduc-
tion, which we adapt from the field of compressive sensing. In
this approach, we combine deliberate randomized subsampling
with structure-exploiting transform-domain sparsity promotion.
Our approach is successful because it reduces the size of seismic
data volumes without loss of information. With this reduction,
we compute Newton-like updates at the cost of roughly one
gradient update for the fully-sampled wavefield.

INTRODUCTION

With the recent resurgence of full-waveform inversion, the cost
of computing gradient and Newton updates has become—aside
from issues with non-uniqueness—one of the major impedi-
ments withstanding successful application of this technology to
industry-size data volumes. The cost of computating the gradi-
ent accurately depends on the size of the data the discretization
of the model while the challenge for the Newton updates lies in
the fact that the Hessian matrix is full and possibly indefinite
(negative eigenvalues). Finally, FWI calls for some sort of reg-
ularization that imposes prior information. Because the elastic
properties in the earth contain singularities (zero-, first, and
fractional-order discontinuities (Herrmann, 2003; Herrmann
et al., 2001; Herrmann, 2001)) that trace curved interfaces, this
prior information will be in the form of one-norms on wavelet
or curvelet coefficients (Herrmann et al., 2008).

To overcome these impediments, we follow an approach that
tackles both these issues replacing Newton updates with sparsity-
promoting programs that for each outer ’Newton’ update invert
the adjoint of the Jabian while minimizing the one-norm on
transform-domain coefficients of the updates. The proposed
methodology follows in the footsteps of attempts towards cost
reductions for the computation of gradients, which are central
to imaging and inversion, through phase-encoded simultaneous
sources (Romero et al., 2000; Herrmann et al., 2009b), possibly
in combination with the removal of subsets of angular frequen-
cies (Sirgue and Pratt, 2004; Mulder and Plessix, 2004; Lin
et al., 2008; Herrmann et al., 2009b). The advantage of this
approach are fourfold.

First, sparsity-promoting programs for the inversion of linear
systems of equations allow us to tap into recent results from
compressive sensing (CS in short throughout the paper, Candès
et al., 2006; Donoho, 2006)—where the argument is made,
and rigorously proven—that compressible signals can be recov-
ered from severely sub-Nyquist samplings by solving a sparsity
promoting program. These developments in conjunction with
the recent resurgence of simultaneous sources (Beasley, 2008;
Berkhout, 2008; Krebs et al., 2009a; Herrmann et al., 2009b;
Herrmann, 2009) allow us to replace conventional impulsive
sources by a limited number of of simultaneous phase-encoded
sources to reduce the computational complexity of comput-
ing the gradients (migration). These randomly phase-encoded
sources render source crosstalk harmless by turning these arti-
fatcs into incoherent noise. This leads to a significant speedup
in the computation of the model updates as reported by the
authors (Herrmann and Li, 2010). Second, the recovery of
the gradient from simultaneous data by sparsity-promoting re-
covery entails inversion of the adjoint of the Jacobian, which
replaces the computation of Gauss-Newton updates with the
reduced Hessian without forming this Hessian. Normally, the
costs of these updates are prohibitive because they are roughly
equivalent to least-squares migration for each Gauss-Newton
update. However, we overcome this problem by using simulta-
neous sources and by solving the sparsity-promoting program
with controlled misfit. This makes the problem easier to solve
and this limits the number of iterations of the one-norm solver
(SPGL1 - Berg and Friedlander, 2008) for the first iterations.
This reduces the risk of overfitting the data and this is a com-
mon approach in inverse problem where the reduced Hessian
is inverted with a limited number of iterations of the conju-
gate gradient solver (CG - Akcelik et al., 2002; Erlangga and
Herrmann, 2009; Burstedde and Ghattas, 2009). Third, promot-
ing curvelet-domain sparsity on the coefficients of the updates
rather then on the model—e.g. by adding transform-domain
sparsity as a prior to Equation 1—simplifies the optimization
because the linearized problem is convex and has a global min-
imum. Fourth, our approach opens the possibility of using
restarts by drawing of a new random CS experiment for each
outer loop. This means that we apply a new dimensionality
reduction for each model update. This approach is reminiscent
of the Kaczmarz method (Kaczmarz, 1937) method that has
been successfully applied by Natterer (2001) in tomography
and that has recently been extended to the inversion of random
matrices by Strohmer and Vershynin (2009). Our approach is
also related to the stochastic approximation method in stochas-
tic optimization (Robbins and Monro, 1951) and was recently
proposed as part of FWI by Krebs et al. (2009a).

THEORY

Full-waveform inversion (FWI) involves the solution of the fol-
lowing multi-experiment unconstrained optimization problem:

min
m

1
2
‖P−F [m,Q]‖2

2,2, (1)
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where each column of P contains the observed data for one
shot and all frequencies. The nonlinear operator F [m,Q] =
DH−1[m]Q simulates data by solving the Helmholtz system
H for all sources in the columns of Q. We restrict the sim-
ulated data to the receiver positions with the detection oper-
ator D to obtain observed data. For simplicity, we assume
that the sources are known and co-located with the receivers.
We also neglect surface-related multiples by by using an ab-
sorbing boundary condition at the surface. Each iteration
of FWI (see table 1) involves the computation of the gra-
dient and the pseudo inverse of the reduced Hessian (H†

red)
(Pratt et al., 1998; Sirgue and Pratt, 2004; Plessix, 2006). The
model updates are weighted by α obtained by a line search.
Result: Estimate for the model em
m←−m0 ; // initial model

while ‖P−F [m,Q]‖2
2,2 ≥ ε doeg←− J∗[m,Q](P−F [m,Q]) ; // gradient

δm←−H†
redg ; // Gauss-Newton-Krylov update with CG

m←−m+αδm ; // model update with line search

end
Algorithm 1: FWI by Gauss-Newton

Dimensionality reduction: Unfortunately, the solution of
the above minimization problem with Gauss-Newton is ex-
tremely costly because each iteration requires the solution of
the forward and time-reversed (adjoint) Helmholtz system for
each of the n f frequencies and for each of the ns sources. More-
over, improvements in convergence of these schemes require
expensive inversions of the reduced Hessian (see e.g. Erlangga
and Herrmann, 2009, and the references therein).

Here, we address these problems by combining dimensionality-
reduction strategies with recovery based on sparsity promotion.
We reduce the data volume and hence the size of the Helmholtz
system by considering a number of randomized experiments (N)
each of which consist of subsets of phase-encoded simultane-
ous sources with randomly selected frequencies. After random
phase encoding, sequential sources are combined into one or
more super shots. Depending on the computer architecture and
the type of solver these randomized experiments may consist
of a single super shot, or several super shots with the same fre-
quencies, or different simultaneous shots with different subsets
of frequencies each. Each randomized experiment is formed by
applying

(RM)i := (RΣ
i F∗Σ diag(eîθθθ i)FΣ⊗I⊗RΩ

i FΩ), i = 1 · · ·N (2)

to the source function Q and involves the solution of the Helmholtz
system for a small subset of sources n′s� ns and frequencies
n′f � n f . For each experiment, these frequencies are randomly
selected by the restriction matrix RΩ

i . The simultaneous super
shots themselves are obtained by phase encoding with random
phases θθθ 1···n′s = Uniform([0,2π]), followed by the selection of
one or more simultaneous sources with the restriction matrix
RΣ

i . Because the cost of evaluating the gradient and Newton
updates depends on the number of sources (ns) and frequencies
(n f ), the computational costs are reduced as long as N×n′s < ns
and N× n′f < n f (Herrmann et al., 2009b; Neelamani et al.,
2008; Herrmann and Li, 2010; Krebs et al., 2009b). After

applying this sampling operator, the nonlinear least-squares
problem reduces to minm

1
2‖P−F [m,Q]‖2

2,2, where the under-
barred quantities refer to compressively sampled wavefields—
i.e., δP := RM(P−F [m,Q]) = P−F [m,Q] (see Herrmann
et al., 2009b, for details).

After this subsampling, FWI involves solutions of the dimen-
sionality reduced Helmholtz system over N×n′s� ns sources
with N×n′f � n f frequencies. As shown in Herrmann and Li
(2010) this leads to cost reductions for wavefield simulation and
migration as reported in the literature (Herrmann et al., 2009b;
Herrmann and Li, 2010).

Dimensionality-reduced gradient updates: FWI involves
gradients (cf. Table 1),

g = ℜ

 X
ω

ω
2
X

s
(ū�v)s,ω

!
= J∗[m,Q]δP, (3)

where u, v are the forward modeled source and reverse-time
modeled residual wavefields for each frequency. Grosso modo,
these gradient updates correspond to migrations given by the
adjoint of the linearized multi-experiment Born scattering op-
erator J[m,Q]. To illustrate how simultaneous sources affect
the gradient (g), we simulate for all frequencies linearized data
for a single impulsive shot and for a single simultaneous shot.
This is an instance of one block of RM. From Figure 1, we
can clearly see that the migrated image from the simultaneous-
source experiment is well resolved. However, there is clearly
leakage from the image towards incoherent noise-like artifacts.

Subsample ratio 0.015 0.006 0.002

n′f /n′s recovery error (dB)

5 17.44 (1.32) 11.66 (0.78) 6.83 (-0.14)
1 17.53 (1.59) 11.89 (1.05) 7.19 (0.15)
0.2 18.22 (1.68) 12.11 (1.32) 7.46 (0.27)

Speed up (×) 66 166 500

Table 1: Signal-to-noise ratios, SNR = 20log10( ‖δm−δ em‖2
‖δm‖2

) for reconstructions with the

wavelet sparsity transform for different subsample and frequency-to-shot ratios. SNRs for `1
are in bold and SNRS for migration are in parentheses.

Updates via sparse inversion: Aside from interference ar-
tifacts, it is well known that gradient updates do not resolve
amplitudes correctly, which may lead to slow convergence. In-
stead of following a Gauss-Newton-Krylov approach where the
reduced Hessian is inverted with conjugate gradients (Akce-
lik et al., 2002; Erlangga and Herrmann, 2009; Burstedde and
Ghattas, 2009), we propose a formulation, where the adjoint of
the Jacobian is inverted directly. Because the Jacobian involves
linearized Born scattering, contributions from internal multiple
scattering are ignored in the updates (Pratt et al., 1998). We
also assume P to be surface-multiple free, which removes an
important nonlinearity in the inversion.

In most inversion problems, people avoid inverting the Jaco-
bian using iterative methods because it involves solutions of the
forward and adjoint Helmholtz system for each iteration, which
is expensive compared to inverting the Hessian iteratively, and
also because this operator is ill conditioned (the Hessian is ill
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conditioned). However, contrary to many inverse problems, the
Hessian of seismic imaging is relatively well behaved—i.e, it is
near unitary for linerarizations with respect to velocity models
that are close to the actual velocity model. In that case, the high-
frequency behavior of the Hessian can be approximated with
diagonal scalings (Herrmann et al., 2008; Symes, 2008), which
can lead to effective preconditioners (Herrmann et al., 2009a).
In this paper, we exploit the relatively well-behaved reduced
Hessian differently by using techniques from compressive sens-
ing to reduce the dimensionality of the linearized system. This
allows us to calculate ’Newton-like’ updates by carrying out
one-norm regularized linearized inversions with the reduced
system—i.e., we compute δ em = SHδex by solving

δex = argmin
δx

‖δx‖`1 subject to ‖δP−Aδx‖2 ≤ σ , (4)

where A := RMJS∗ = JS∗, and J = J[m,Q] and where SH is
the adjoint of some sparsifying transform (e.g. curvelets or
wavelets). The sparsity-promoting program in Equation 4 seeks
amongst all possible curvelet-coefficient vectors the vector has
smallest `1 norm and that yields a fit with tolerance σ . Be-
cause of the dimensionality reduction, our algorithm should be
competitive with CG on the Hessian.

Sparsity continuation with CS renewal: It is well know
that FWI is plagues by local minima, which are related to os-
cillations that depend on the spatial wavelength. A variety of
continuation methods has been proposed to mitigate this prob-
lem by allowing high-frequency components and late arriving
reflections to enter into the solution only gradually. This is done
through carefully designed filtering and windowing operations
(Pratt et al., 1998; Burstedde and Ghattas, 2009). We follow
a different and complementary strategy where we allow the
one-norm of the solution to grow only gradually. In this way,
we are able to preserve transform-domain sparsity on the model,
and not only on the updates. Our algorithm is summarized in
Table 2. The keys for the success of this algorithms lie in (i)
finding a strategy for lowering the tolerance parameter σ j for
each jth iteration. In the beginning, we are far from the solution
and we have to avoid overfitting the data, which would result in
coefficient vectors of the updates that are insufficiently sparse
to sparsity on the model itself. As the algorithm progresses
towards the solution, we need extract more information from
the data by lowering the tolerance—i.e., σ j → 0 as h→ ∞.
(ii) in renewing the CS experiment after each model update.
This means we draw new data by compressively sampling the
residual and by defining a new CS matrix A.

EXAMPLE

To illustrate the performance of our algorithm, we study the
behavior of single gradient updates by conducting a series of
experiments where we vary the subsampling ratio—i.e., the
aspect ratio of RM—and the frequency-to-shot subsampling
ratio. All simulations are carried with 256 co-located shot
and receiver positions sampled at a 29 m interval. The time
sample interval is 0.016s. Comparison between the gradient
updates and the updates by sparsity promotion shows remark-
able high-fidelity results even for increasing subsampling ra-
tios. As expected, the numbers in Table 1 confirm increasing
recovery errors for increasing subsampling ratios. For fixed

subsampling ratios, however, we observe improved results for
decreasing frequency-to-shot ratios, which suggests that simul-
taneous shots contribute more to the solution. These trends
also hold for migrated images—i.e., standard gradient updates.
Because the speedups are proportional to subsampling ratios,
we can conclude that the dimensionality reductions offset the
costs of the `1 recovery approximately.

We also tested the behavior of the algorithm in the setting of
FWI. For this purpose, we ran an experiment with 10 simulta-
neous shots and 5 randomly selected frequencies starting from
the initial model plotted in Figure 2(a). Because the develop-
ment of proper sparsity continuation is still under development,
we limited the number of iterations for the `1 solver. Our ex-
periments showed that the algorithm only converges for an
initial model that is relatively close to the actual model. Our
sparsity-promoting procedure with renewals (cf. Figure 1(b)
and 2(b)) clearly shows improvement because it is able to cre-
ate a high-resolution FWI result from a highly dimensionality
reduced FWI problem. Finally, we can also observe from the
`1-norm recovered gradient updates for the slownesses (plot-
ted in Figure 2(c) and 2(d)) that increasingly higher frequency
components are added to the solution.

CONCLUSIONS

Dimensionality-reduction strategies will be instrumental for
the success of FWI. These strategies are build on the premise
that whenever models exhibit structure (read transform-domain
sparsity), these models can be reconstructed from randomized
subsampling that are proportional to transform-domain sparsity.
Because these approaches remove the “curse of dimensionality”,
which is one of the major impediments of FWI, this contribution
may lead to a paradigm shift where Newton-type updates, which
otherwise would have to be computed over all frequencies
and all sequential sources, can now be computed by inverting
the dimensionality-reduced linearized Born scattering operator.
This result including the renewals will help bring FWI into the
main stream of seismic data processing.
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Result: Estimate for the model em
m←−m0 ; // initial model

j←− 0 ; // loop counter

Q←− (RM)iQ ; // Draw random sim. shot

while ‖P−F [m,Q]‖2
2,2 ≥ ε do

j := j +1; // increase counter

A←− J[m,Q]S∗ ; // Calculate Jacobian

Solve Equation 4 for σ j ; // sparsity-promoting recovery

m←−m+S∗δex ; // compute model update

Q←− (RM)iQ ; // Draw random sim. shot

end
Algorithm 2: FWI by repeated one-norm minimization.
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Figure 1: Sequential-shot versus simultaneous-source gradients (migration) of a single point diffractor in the target zone. (a) Migrated
image for a single a single simultaneous shot. (b) FWI result without renewal of CS experiments.
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Figure 2: Proof of principle for full-waveform inversion with updates obtained by sparsity promotion (a) Initial smooth background
model (b) Sparsity promoted inversion after 10 updates with n′f = 5 and n′s = 10 (c) The first update obtained by solving the `1-norm
minimization problem (d) The nineth update.
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