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Motivation

Curse of dimensionality for d>2

• Exponentially increasing data volumes

• Helmholtz requires implicit solvers to address bandwidth

• Computational complexity grows linearly with # RHS’s

• Makes computation of the misfit functional & gradients 
prohibitively expensive
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Wish list
An inversion technology that 

• is based on a time-harmonic PDE solver, which is easily 
parallelizable, and scalable to 3D 

• does not require multiple passes over all data

• removes the linearly increasing costs of implicit solvers for 
increasing numbers of frequencies & RHS’s
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Key technologies

Simultaneous sources & phase encoding 

• supershots

Stochastic optimization & machine learning [Bertsekas, ’96]

• stochastic gradient decent/stochastic approximation

Compressive sensing [Candès et.al, Donoho, ’06]

• sparse recovery & randomized subsampling 

[Krebs et.al., ’09, Operto et. al., ’09, FJH et.al., ’08-10’] 

[Beasley, ’98, Berkhout, ’08]

[Morton, ’98, Romero, ’00]

[Nemirovski, ’09]
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FWI formulation
Multiexperiment unconstrained optimization problem:

• requires large number of PDE solves

• linear in the sources

• apply randomized dimensionality reduction 

min
m∈M

1
2
‖D−F [m;Q]‖2

2,2 with F [m;Q] := PH−1[m]Q

[Tarantola, 84; Pratt, ’98; Plessix, ‘06]
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Reduced FWI 
formulation

Multiexperiment unconstrained optimization problem:

• requires smaller number of PDE solves

• explores linearity in the sources & block-diagonal structure 
of the Helmholtz system

• uses randomized frequency selection and phase encoding

min
m∈M

1
2
‖D−F [m;Q]‖2

2,2 with F [m;Q] := PH−1Q

[FJH et.al., ’08-10’, Krebs et.al., ’09, Operto et. al., ’09] 
[Haber, Chung, and FJH, ’10] 
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Sequential-source
wavefield

Simultaneous shot
at 5 Hz
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[Morton, ’98, Romero, ’00]
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Image
at 5Hz
Sequential-source
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[Morton, ’98, Romero, ’00]
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Batch/mini experiment

Collection of K simultaneous-source experiments with batch 
size

Q Q = RMQ

K ! nf × ns

adapted from FJH et. al. ,09

[FJH et. al.  ’08-’10]
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Observations
Increased wavenumber content leads to improved image

Severe subsampling leads to interferences
(source crosstalk and aliases)

Increasing the number of frequencies & simultaneous 
sources reduces incoherent interference noise

Is there something more we can say...

[FJH et. al.  ’08-’10]
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Interpretations
Consider randomized dimensionality reduction as instances of

• stochastic optimization & machine learning
(today’s talk)

• compressive sensing
(tomorrow’s talk by Xiang Li, 10:35 am, Room 405/406)

[FJH et. al, ’08-’10]
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Stochastic 
optimization

Replace deterministic-optimization problem

with sum cycling over different sources & corresponding shot 
records 
(columns of D & Q)

min
m∈M

f(m) =
1
N

N∑

i=1

1
2
‖di − F [m;qi]‖2

2

[Natterer, ’01]
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Stochastic average 
approximation

by a stochastic-optimization problem

with

and

w ∈ N(0, 1) and Ew{wwH} = I

min
m∈M

Ew{f(m,w) =
1
2
‖Dw − F [m;Qw]‖22}

≈ 1
K

K∑

j=1

1
2
‖dj − F [m;qj ]‖22

 [Haber, Chung, and FJH, ’10] 

dj = Dwj , qj = Qwj
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FWI with phase 
encoding

Multiexperiment unconstrained optimization problem:

• requires smaller number of PDE solves

• exploits linearity in the sources & block-diagonal structure 
of the Helmholtz system

• uses randomized frequency selection and phase encoding

min
m∈M

1
2
‖D−F [m;Q]‖2

2,2 with F [m;Q] := PH−1Q

 [Krebs et.al., ’09, Operto et. al., ’09 ; FJH et. al. ’08-’10]
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Stochastic average 
approximation

In the limit             , stochastic & deterministic formulations 
are identical

We gain as long as              ...

Since the error in Monte-Carlo methods decays only slowly 

this approach may be problematic...

However, the location for the minimum of the misfit may be 
relatively robust...

K ! N

(O(K−1/2))

K →∞

Tuesday, October 19, 2010



SLIM

Stylized example
Search direction for batch size K:
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Decay
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 [adapted from Haber, Chung, and FJH, ’10] 
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Stochastic 
approximation

Use different simultaneous shots for each subproblem, i.e.,

Requires fewer PDE solves for each GN subproblem...

• corresponds to stochastic approximation

• related to Kaczmarz (’37) method applied by Natterer, ‘01

• supersedes ad hoc approach by Krebs et.al., ‘09

[Nemirovski, ’09]

Q !→ Qk

[Bertsekas,’ ’96; Nemirovski, ’09]
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K=1 w and w/o redraw
[noise-free case]
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Known issues
Renewals introduce stochasticity in the gradients

May lead to

• lack of convergence

• sensitivity to noise in data

Solutions 

• increase the batch size

• average over the past model updates

[Krebs, ’09-’10]
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Stochastic 
approximation

Algorithm 1: Stochastic gradient descent
Result: Output estimate for the model m
m ←− m0; k ←− 0 ; // initial model

while not converged do
{dk,qk}←− {Dwk,Qwk} with wk ∈ N(0, 1) ; // draw sim. exp.

gk ←− ∇F∗[mk−1,qk](dk −F [mk−1,qk]) ; // gradient

mk+1 ←−mk − γkgk ; // update with linesearch

mk+1 = 1
k+1

(∑k
i=1 mi + mk+1

)
; // average

k ←− k + 1;
end

 [Bertsekas, ’96; Haber, Chung, and FJH, ’10] 
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K=1
[noisy case]
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K=5
[noisy case]

x [km]

z 
[k

m
]

0 500 1000 1500 2000 2500 3000

0

500

1000

1500

2000
x [km]

z 
[k

m
]

0 500 1000 1500 2000 2500 3000

0

500

1000

1500

2000

100 101 102 103
10−1.18

10−1.15

10−1.12

10−1.09

iteration

er
ro

r

 

 

w/o averaging
w averaging
smart averaging

w averaging smart averaging

x [km]

z 
[k

m
]

0 500 1000 1500 2000 2500 3000

0

500

1000

1500

2000

w/o averaging

Tuesday, October 19, 2010



SLIM

Sources of noise
Noise contributions

• Noisy data

• Interference noise (source cross talk & aliases)

• Inter gradient noise (renewals)

can lead to a noise level that is too high

• leads to divergence
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Observations
Renewals improve convergence significantly

Averaging removes noise instability but is detrimental to the 
convergence

Smart averaging over limited history improves convergence

Increasing the batch size in combination with smart averaging 
leads to superior convergence
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Alternative I
[integrated stochastic gradient descend]

Average the gradients instead, i.e.,

with

over last m iterations.

mk+1 = mk − ηk∇F(mk)

∇F(mk) =
∑k

i=k−m eα[i−k−m]∇F(mi)
∑k

i=k−m eα[i−k−m]
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Case study I
1. Measure performance of l-BFGS with renewals as function of 

the batch size K

2. Compare l-BFGS on complete data with integrated stochastic 
gradient descend (iSGD)
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Experimental
setup

Marmousi model:

• 10 m grid spacing (3000 X 5000 m)

• 113 shots with 40m spacing and offsets 250-4749m

• 249 receivers with 20m spacing and offsets 20-4980m

• Ricker wavelet with central frequency of 10Hz

• 3.6s recording time with 0.009s sample interval
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FWI setup
l-BFGS (reference):

• 50 frequencies between 5-33Hz

• 18 iterations

integrated Stochastic Gradient Descend 

• randomized simultaneous shots

• randomly selected frequencies between 5-33Hz
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Performance
[l-BFGS w renewals]

Subsample ratio 0.0113 0.0028 0.0007

n′
f/n′

s recovery error (dB)

.25 6.46 3.31 0.78
1 3.22 2.17 0.74
4 3.66 3.10 0.45

Speed up (×) 88 352 1410
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Exhaustive search

α -.2 -.1 0 .1 .2 .3 .4

SNR(dB) 1.7712 2.0776 2.0199 2.9072 5.2496 7.0717 7.2719

α .5 .6 .7 .8 .9 1

SNR(dB) 7.8315 6.5770 6.7162 7.4953 5.8569 5.9605
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True model
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Initial model
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Observations
Averaging of gradients damps stochasticity 

‘Ad hoc’ weighted averaging of iSGD leads to a significant 
acceleration

Consistent with asymptotic theory for first-order SGD

Formulation is amenable to incomplete acquisition

Results remain noisy, and lack sharp edges

[Haber, Chung, and 
FJH, ’10]

[Bertsekas, ’96]
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Alternative II
Leverage findings from sparse recovery & compressive sensing

• consider each phase-encoded Gauss-Newton update as 
separate compressive-sensing experiment

• remove interferences by curvelet-domain sparsity 
promotion

• exploit properties of the Pareto curve

[Candes et al., ’06; Donoho, ’06]
[Demanet et. al. ’07; FJH & Li, ’08-’09]
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Gauss-Newton

Algorithm 1: Vanilla Gauss Newton
Result: Output estimate for the model m
m ←− m0; k ←− 0 ; // initial model

while not converged do
pk ←− arg minp

1
2‖δd−∇F [mk;Q]p‖22 + λk‖p‖22 ; // search dir.

mk+1 ←−mk + γkpk ; // update with linesearch

k ←− k + 1;
end
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Compressive 
updates

Algorithm 1: Gauss Newton with sparse updates
Result: Output estimate for the model m
m ←− m0; k ←− 0 ; // initial model

while not converged do
pk ←− S∗ arg minx

1
2‖δd

k −∇F [mk;Qk]S∗x‖22 s.t. ‖x‖1 ≤ τk

mk+1 ←−mk + γkpk ; // update with linesearch

k ←− k + 1;
end

[Li & FJH, ’10; van den Berg & Friedlander, ’08]
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Initial model
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Inverted model
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True model
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Conclusions

We established phase-encoded FWI with renewals as an 
instance stochastic approximation 

• understand factors that contribute to noise sensitivity

• factors that stabilize 

Identified shortcoming of slow decay for the error as batch size 
increases

Indications that compressive sensing supersedes the stochastic 
approximation by sparse recovery of dimensionality reduced 
subproblems

See tomorrow’s talk by Xiang Li, 10:35 am, Room 405/406
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Further reading
Compressive sensing

– Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information by Candes, 06.

– Compressed Sensing by D. Donoho, ’06

Simultaneous acquisition
– A new look at simultaneous sources by Beasley et. al., ’98.

– Changing the mindset in seismic data acquisition by Berkhout ’08.

Simultaneous simulations, imaging, and full-wave inversion:
– Faster shot-record depth migrations using phase encoding by Morton & Ober, ’98.

– Phase encoding of shot records in prestack migration by Romero et. al., ’00.
– High-resolution wave-equation amplitude-variation-with-ray-parameter (AVP) imaging with sparseness constraints by Wang & Sacchi, ’07

– Efficient Seismic Forward Modeling using Simultaneous Random Sources and Sparsity by N. Neelamani et. al., ’08.

– Compressive simultaneous full-waveform simulation by FJH et. al., ’09.
– Fast full-wavefield seismic inversion using encoded sources by Krebs et. al., ’09

– Randomized dimensionality reduction for full-waveform inversion by FJH & X. Li, ’10

 Stochastic optimization and machine learning:

– A Stochastic Approximation Method by Robbins and Monro, 1951

– Neuro-Dynamic Programming by Bertsekas, ’96
– Robust stochastic approximation approach to stochastic programming by Nemirovski et. al., ’09

– Stochastic Approximation and Recursive Algorithms and Applications by Kushner and Lin
– Stochastic Approximation approach to Stochastic Programming by Nemirovski

– An effective method for parameter estimation with PDE constraints with multiple right hand sides. by Eldad Haber, Matthias Chung, 
and Felix J. Herrmann. ’10
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Thank you

slim.eos.ubc.ca
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