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SUMMARY

In this paper, we offer an alternative sampling method leverag-
ing recent insights from compressive sensing towards seismic
acquisition and processing for data that are traditionally consid-
ered to be undersampled. The main outcome of this approach
is a new technology where acquisition and processing related
costs are no longer determined by overly stringent sampling
criteria, such as Nyquist. At the heart of our approach lies ran-
domized incoherent sampling that breaks subsampling related
interferences by turning them into harmless noise, which we
subsequently remove by promoting transform-domain sparsity.
Now, costs no longer grow with resolution and dimensionality
of the survey area, but instead depend on transform-domain
sparsity only. Our contribution is twofold. First, we demon-
strate by means of carefully designed numerical experiments
that compressive sensing can successfully be adapted to seismic
acquisition. Second, we show that accurate recovery can be
accomplished for compressively sampled data volumes sizes
that exceed the size of conventional transform-domain data
volumes by only a small factor. Because compressive sens-
ing combines transformation and encoding by a single linear
encoding step, this technology is directly applicable to acqui-
sition and to dimensionality reduction during processing. In
either case, sampling, storage, and processing costs scale with
transform-domain sparsity.

COMPRESSIVE-SENSING DESIGN AND ASSESSMENT

In summary, according to the theory of compressive sensing
(CS - Candès et al., 2006; Donoho, 2006), the recovery of a sig-
nal with a sparse transform-domain representation is guaranteed
when two conditions are met, namely 1) the transform-domain
vector is sufficiently sparse and 2) the subsampling artifacts
are incoherent, which is a direct consequence of measurements
with a sampling matrix whose action mimics that of a Gaussian
matrix. The first condition requires that the energy of the signal
is well concentrated in the sparsifying domain. The second
condition of incoherence requires understanding of interactions
between the sparsifying transform, the basis of the domain in
which the samples are taken, and the sampling operator. Conse-
quently, CS can not be applied to arbitrary linear inversion prob-
lems. To the contrary, the success of CS hinges on the design
of acquisition strategies that are (physically and/or) practically
feasible and that lead to favorable conditions for sparse recov-
ery. The CS matrix needs to both be realizable and behave as a
Gaussian matrix. The following key components need to be in
place: I: a sparsifying signal representation that exploits the
signal’s structure by mapping the energy into a small number
of significant transform-domain coefficients. The smaller the
number of significant coefficients, the better the recovery; II:
sparse recovery by transform-domain one-norm minimiza-
tion that is able to handle large system sizes. The fewer the
number of matrix-vector evaluations, the faster and more prac-
tically feasible the wavefield reconstruction; III: randomized

seismic acquisition that breaks coherent interferences induced
by deterministic subsampling schemes. Randomization renders
subsampling related artifacts—including aliases and simultane-
ous source crosstalk—harmless by turning these artifacts into
incoherent Gaussian noise;

Given the complexity of seismic data in high dimensions and
field practicalities of seismic acquisition, the mathematical
formulation of CS does not readily apply to seismic explo-
ration. Therefore, we will focus specifically on the design of
source subsampling schemes that favor recovery and on the
selection of the appropriate sparsifying transform. Because the-
oretical results are mostly lacking, we will guide ourselves by
numerical experiments that are designed to measure recovery
performance.

SPARSE RECOVERY

After organizing high-resolution samples into the vector f :=˘
f [q]

¯
q=0···N−1 ∈ RN , we arrive at the following expression

for compressively-sampled measurements:

b = RMf ∈ Rn with n� N. (1)

In this formulation, incomplete seismic acquisition is modeled
by taking inner products between the discrete vector f and
n� N randomly selected rows from the measurement matrix
M as dictated by R. We recover the discretized wavefield f by
inverting the compressive-sampling matrix

A :=

restrictionz}|{
R M|{z}

measurement

synthesisz}|{
SH (2)

with a sparsity-promoting program—i.e., ef = SHex with

ex = argmin
x

‖x‖1 :=
P−1X
p=0

|x[i]| subject to Ax = b. (3)

This formulation differs from standard compressive sensing be-
cause we allow for a wavefield representation that is redundant—
i.e., S ∈ CP×N with P≥ N. Our hope is—and there is unfortu-
nately no formal proof—that the above sparsity-promoting opti-
mization program, which finds amongst all possible transform-
domain vectors the vector ex ∈RP that has the smallest `1-norm,
recovers high-resolution data ef ∈ RN .

Approximation error: Like many other naturally occurring
phenomena, seismic wavefields do not permit strictly sparse
representations—i.e., representations where many coefficients
are strictly zero. However, for an appropriately chosen repre-
sentation magnitude-sorted transform-domain coefficients often
decay rapidly–i.e., the magnitude of the jth largest coefficient
is O( j−s) with s≥ 1/2. For orthonormal bases, this decay rate
is directly linked to the decay of the nonlinear approximation
error (see e.g. Mallat, 2009). This error expresses the difference



between the discretized wavefield and its reconstruction from
the largest k transform-domain coefficients—expressed by

σ(k) = ‖f− fk‖= O(k1/2−s), (4)

with fk the reconstruction from the largest k - coefficients. Un-
fortunately, this relationship between the decay rates of the
magnitude-sorted coefficients and the decay rate of the nonlin-
ear approximation error does not hold for redundant transforms.
Another complicating factor is that expansions with respect to
these signal representations are not unique. This means that
there are many coefficient sequences that explain the data f
making them less sparse. For instance, analysis by the curvelet
transform (Candes et al., 2006) of a single curvelet does not
produce a single non-zero entry in the curvelet coefficient vec-
tor.

To address this issue, we use an alternative definition for the
nonlinear approximation error, which is based on the solution
of a sparsity-promoting program. With this definition, the k-
term nonlinear-approximation error is computed by taking the
k−largest coefficients from the vector that solves minx ‖x‖1 s.t.
SHx = f. Because this vector is obtained by inverting the syn-
thesis operator SH with a sparsity-promoting program, this
vector is always sparser than the vector obtained by applying
the analysis operator S directly. To account for different re-
dundancies in the transforms, we study signal-to-noise ratios
(SNRs) as a function of the sparsity ratio ρ = k/P (with P = N
for orthonormal bases) defined as

SNR(ρ) = 20log
‖f− fρ‖
‖f‖

. (5)

The smaller this ratio, the more coefficients we ignore and the
sparser the transform-coefficient vector becomes. In our study,
we include fρ that are derived from either the analysis coeffi-
cients or from the synthesis coefficients. The latter coefficients
are solutions of the above sparsity-promoting program.

Empirical approximation errors: The above definition gives
us a metric to compare recovery SNRs of seismic data for
wavelets, curvelets, and wave atoms. We make this comparison
on a common-receiver gather extracted from a Gulf of Suez
dataset. Because the current implementations of wave atoms
(Demanet and Ying, 2007) only support data that is square, we
padded the 178 traces with zeros to 1024 traces. The temporal
and spatial sampling interval of the high-resolution data are
0.004s and 25m, respectively. Because this zero-padding biases
the ρ , we apply a correction.

Our results are summarized in Figure 1 and they clearly show
that curvelets lead to rapid improvements in SNR as the sparsity
ratio increases. This effect is most pronounced for synthesis
coefficients, benefiting remarkably from sparsity promotion. By
comparison, wave atoms benefit not as much, and wavelet even
less. This behavior is consistent with the overcompleteness of
these transforms, the curvelet transform matrix has the largest
redundancy (a factor of about eight in 2-D) and is therefore the
tallest. Wave atoms only have a redundancy of two and wavelets
are orthogonal. Since our method is based on sparse recovery,
this experiment suggests that sparse recovery from subsampling
would potentially benefit most from curvelets. However, this

is not the only factor that determines the performance of our
compressive-sampling scheme.
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Figure 1: Signal-to-noise ratios (SNRs) for the nonlinear approximation errors of the
common-receiver. The SNRs are plotted as a function of the sparsity ratio ρ ∈ (0, 0.02]. The
plots include curves for the errors obtained from the analysis and one-norm minimized synthesis
coefficients. Notice the significant improvement in SNRs for the synthesis coefficients obtained
by solving a `1-norm problem.

SUBSAMPLING OF SHOTS

Mathematically, sequential and simultaneous acquisition only
differ in the definition of the measurement basis. For sequential-
source acquisition, this sampling matrix is given by the Kro-
necker product of two identity bases—i.e., I := INs ⊗ INt ,
which is a N×N identity matrix with N = Nt ×Ns, the product
of the number of time samples Nt and the number of shots Ns.
For simultaneous acquisition, where all sources fire simulta-
neously, this matrix is given by M := GNs ⊗ INt with GNs a
Ns×Ns Gaussian matrix with i.i.d. entries. In both cases, we
use a restriction operator R := Rns ⊗INt to model the collection
of incomplete data by reducing the number of shots to ns � Ns.
This restriction acts on the source coordinate only.

Roughly speaking, CS predicts superior recovery for compressive-
sampling matrices with smaller mutual coherence, which de-
pends on the interplay between the restriction, measurement,
and synthesis matrices. To make a fair comparison, we keep
the restriction matrix the same and study the effect of having
measurement matrices that are either given by the identity or
by a random Gaussian matrix. Physically, the first CS exper-
iment corresponds to surveys with sequential shots missing.
The second CS experiment corresponds to simultaneous-source
experiments with simultaneous sources missing. Examples of
both measurements for the real common-receiver gather are
plotted in Figure 2(a) and 2(b), respectively. Both data sets
have 50% of the original size. Remember that the horizontal
axes in the simultaneous experiment no longer has a physi-
cal meaning. Notice also that there is no observable coherent
crosstalk amongst the simultaneous sources.

Multiplication of orthonormal sparsifying bases by random
measurement matrices turns into random matrices with a small
mutual coherence amongst the columns. This property also
holds (but only approximately) for redundant signal representa-
tions with synthesis matrices that are wide and have columns
that are linearly dependent. This suggests improved perfor-
mance using random incoherent measurement matrices. To
verify this statement empirically, we compare sparse recoveries
with Equation 3 from data plotted in Figures 2(a) and 2(b).



Despite the fact that simultaneous acquisition with all sources
firing simultaneously may not be easily implementable in prac-
tice, this approach has been applied successfully to reduce sim-
ulation and imaging costs (Herrmann et al., 2009; Herrmann,
2009; Lin and Herrmann, 2009a,b). In the “eyeball norm”, the
recovery from the simultaneously data is, as expected, clearly
superior (cf. Figures 2(c) and 2(d)). This behavior is consistent
with CS, which predicts improved performance for sampling
schemes that are more incoherent. Because this qualitative
statement depends on the interplay between the sampling and
the sparsifying transform, we conduct an extensive series of
experiments to get a better idea on the performance of these two
different sampling schemes for different sparsifying transforms.

Sparse recovery errors: The examples of the previous sec-
tion clearly illustrate that randomized sampling is important,
and that randomized simultaneous acquisition leads to better
recovery compared to randomized subsampling of sequential
sources. To establish this observation more rigorously, we
calculate estimates for the recovery error as a function of the
sampling ratio δ = n/N by conducting a series of 25 controlled
recovery experiments. For each δ ∈ [0.2, 0.8], we generate
25 realizations of the randomized compressive-sampling ma-
trix. Applying these matrices to our common-source gather
produces 25 different data sets that are subsequently used as
input to sparse recovery with wavelets, curvelets, and wave
atoms. For each realization, we calculate the SNR(δ ) with

SNR(δ ) = 20log
‖f−efδ ‖
‖f‖

, (6)

where efδ = SHexδ and exδ = argminx ‖x‖1 s.t. Aδ x = b.
For each experiment, the recovery ofefδ is calculated by solving
this optimization problem for 25 different realizations of Aδ

with Aδ := Rδ Mδ SH , where Rδ := Rns ⊗ INt with δ = ns/Ns.
For each simultaneous experiment, we also generate different
realizations of the measurement matrix M := GNs ⊗ INt .

From these randomly selected experiments, we calculate the
average SNRs for the recovery error, SNR(δ ), including its
standard deviation. By selecting δ evenly on the interval
δ ∈ [0.2, 0.8], we obtain reasonable reliable estimates with
error bars. Results of this exercise are summarized in Fig-
ure 3. From these plots it becomes immediately clear that
simultaneous acquisition greatly improves recovery for all three
transforms. Not only are the SNRs better, but the spread in
SNRs amongst the different reconstructions is also much less,
which is important for quality assurance. The plots validate CS,
which predicts improved recovery for increased sampling ratios.
Although somewhat less pronounced as for the approximation
SNRs in Figure 1, our results again show superior performance
for curvelets compared to wave atoms and wavelets. This ob-
servation is consistent with our earlier empirical findings.

Empirical oversampling ratios: The main advantage of CS
is that it provides access to the largest, and hence most sig-
nificant, transform-domain coefficients without the necessity
of conducting a complete high-resolution survey followed by
the computation of the k-term nonlinear approximation. Con-
versely, sparse recovery from incoherent samples requires sig-
nificantly less samples, but this reduction goes at the expense

(a)

(b)

(c)

(d)

Figure 2: Recovery from a compressively-sampled common receiver gather with 50%
(δ = 0.5) of the sources missing. (a) Receiver gather with sequential shots selected uniformly
at random. (b) The same but for random simultaneous shots. (c) Recovery from incomplete
data in (a). (d) The same but now for the data in (b). Notice the remarkable improvement in
the recovery from simultaneous data.
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Figure 3: SNRs (cf. Equation 6) for nonlinear sparsity-promoting recovery from com-
pressively sampled data with 20%−80% of the sources missing (δ ∈ [0.2, 0.8]). The results
summarize 25 experiments for 25 different values of δ ∈ [0.2, 0.8]. The plots include estimates
for the standard deviations. From these results, it is clear that simultaneous acquisition (results
in the left column) is more conducive to sparsity-promoting recovery. Curvelet-based recovery
seems to work best, especially towards high percentages of data missing.

of conducting incoherent sampling in conjunction with the solu-
tion of a computationally intensive large-scale sparse recovery
problem. Therefore, the key factor that establishes CS is the
sparsity ratio ρ that is required to recover wavefields with errors
that do not exceed a predetermined nonlinear approximation
error (cf. Equation 5). The latter sets the fraction of largest
coefficients that needs to be recovered to meet a preset minimal
SNR for reconstruction.

Motivated by Mallat (2009), we introduce the oversampling
ratio δ/ρ ≥ 1. For a given δ , we obtain a target SNR from
SNR(δ ). Then, we find the smallest ρ for which the nonlinear
recovery SNR is greater or equal to SNR(δ ). Thus, the oversam-
pling ratio δ/ρ ≥ 1 expresses the sampling overhead required
by compressive sensing. This measure helps us to determine
the performance of our CS scheme numerically. The smaller
this ratio, the smaller the overhead and the more economically
favorable this technology becomes compared to conventional
sampling schemes. We can compute this oversampling ratio
for each δ by finding the sparsity ratio ρ for which the recov-
ery SNR(δ ) is smaller or equal to the nonlinear approximation
SNR(ρ), i.e., we calculate for each δ ∈ [0.2, 0.8]

δ/ρ with ρ = inf{ρ̃ : SNR(δ )≤ SNR(ρ̃)}. (7)

When the sampling ratio approaches one from below (δ → 1),
the data becomes more sampled leading to smaller and smaller
recovery errors. To match this decreasing error, the sparsity
ratio ρ → 1 and consequently we can expect this oversampling
ratio to go to one, δ/ρ → 1. Remember that in the CS paradigm,
acquisition costs only grow with the permissible recovery SNR
that determines the sparsity ratio. Conversely, the costs of
conventional sampling grow with the size of the sampling grid
irrespective of the transform-domain compressibility of the
wavefield, which in higher dimensions proves to be a major
difficulty.

The numerical results of our experiments are summarized in
Figure 4. Our calculations use empirical SNRs for both the
approximation errors of the synthesis coefficients as a function
of ρ and the recovery errors as a function of δ . The estimated

curves lead to the following observations. First, as the sam-
pling ratio increases the oversampling ratio decreases, which
can be understood because the recovery becomes easier and
more accurate. Second, recoveries from simultaneous data
have significantly less overhead and curvelets outperform wave
atoms, which in turn perform significantly better then wavelets.
All curves converge to the lower limit (depicted by the dashed
line) as δ → 1. Because of the large errorbars in the recovery
SNRs (cf. Figure 3), the results for the recovery from miss-
ing sequential sources are less clear. General trends predicted
by CS are also observable for this type of acquisition, but the
performance is significantly worse then for recovery with si-
multaneous sources. Finally, the observed oversampling ratios
are reasonable for both curvelet and wave atoms.

CONCLUSIONS

With carefully designed experiments and the introduction of per-
formance measures for nonlinear approximation and recovery
errors, we established that curvelets perform best in recovery,
closely followed by wave atoms, and with wavelets coming
in as a distant third. Our observation of significant improved
recovery for simultaneous-source acquisition also confirms pre-
dictions of compressive sensing. Finally, our analysis showed
that accurate recoveries are possible from compressively sam-
pled data volumes that exceed the size of conventionally com-
pressed data volumes by only a small factor. The fact that
compressive sensing combines sampling and compression in a
single linear encoding steps has profound implications for ex-
ploration seismology that include: a new randomized sampling
paradigm, where the cost of acquisition are no longer deter-
mined by resolution and size of the acquisition area, but by the
desired reconstruction error and transform domain sparsity of
the wavefield; and a new paradigm for randomized processing
and inversion, where dimensionality reductions will allow us to
mine high-dimensional data volumes for information in ways,
which previously, would have been computationally infeasible.
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Figure 4: Oversampling ratio δ/ρ as a function of the sampling ratio δ (cf. Equation 7)
for sequential- and simultaneous-source experiments. As expected, the overhead is smallest for
simultaneous acquisition and curvelet-based recovery.




