Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2009 SLIM group @ The University of British Columbia.

THE UNIVERSITY OF BRITISH COLUMBIA | VANCOUVER

Groundroll prediction by interferometry & separation by curvelet-domain filtering

Jiupeng Yan & Felix J. Herrmann

Seismic Laboratory for Imaging & Modeling Department of Earth & Ocean Sciences The University of British Columbia

Motivation

- Improve groundroll separation
 - preserve reflection, increase groundroll separation
- Develop data-driven workflow for groundroll separation
 - using data itself as prediction operator for groundroll
- Adapt tools for primary-multiple separation to reflectiongroundroll separation

Strategy

• Use inteferometry to predict groundroll

Xue & Schuster '07, Halliday et al '07, Vasconcelos & Snieder '08

 Adaptively match the prediction by Fourier and Curvelet domain matching technique

Verschuur '97, Herrmann '08

 Separate by sparsity promotion and Bayesian separation algorithm

Wang, Saab, Yilmaz & Herrmann '08

Interferometry

$$\mathbf{G}^{*}(x_{B}, x_{A}, \omega) + \mathbf{G}(x_{B}, x_{A}, \omega)$$

$$\approx \frac{2}{\rho c} \oint_{\partial V} \mathbf{G}(x_{A}, x, \omega) \mathbf{G}^{*}(x_{B}, x, \omega) d^{2}x$$
Wapenaar '04

Interferometry: a simple example

Interferometry: a simple example

Interferometry: a simple example

Interferometry

Interferometry

Interferometry of seismic data

• Sources restricted to surface

Interferometry of seismic data

• Sources contributing to surface waves

Interferometry of seismic data

• Sources contributing to surface waves and reflections

- Elastic finite difference modeling: P wave velocity profile:
 - 250 active sources locate on surface

• Sources contributing to surface waves

• Sources contributing to surface waves and reflections

Prediction of groundroll

Cross-correlation of 3D data cube equals to matrix multiple in frequency domain

Berkhout '97

Prediction of groundroll

Frequency Slice

\mathbf{RPRP}^*

 ${f P}\,$ frequency slice of data

 ${f R}$ restriction matrix muting diagonal receivers

Problems with the prediction

- Unknown source wavelet
 - ➡ Global prediction error in interferometry data
- Conditions to produce exact Green's function not met
 - finite aperture
 - attenuating media
 - usually only vertical sources available, etc.
 - ➡ Prediction error depends on position and dip etc,
- Requires adaptive matching, similar to problems in SRME method (surface related multiples elimination)

Workflow

Seismic Laboratory for Imaging and Modeling

Adaptive matching methods

- Transform-domain matched-filtering forms the basis of
 - *adaptive* subtraction during surface-related multiple elimination [Verschuur '97]
 - *idem* during surface-wave removal with interferometry [Vasconcelos '08, Wapenaar '08]
- Fourier-based matching
 - accounts for amplitude-spectra mismatches & global kinematic errors
 - fails for errors that vary spatially & as function of the local dip
- Spatial & windowed Fourier matching
 - run risk of over fitting (loss of primary energy) [Verschuur '97]
- *Curvelet-domain* matching in phase space
 - corrects for *amplitude* errors that vary *smoothly* as a function of position & dip
 - successful applications in multiple elimination [Herrmann '08]

2D discrete curvelets

Localized in frequency domain, multi-direction, multi-scale

E. J. Candes, et al '05

Seismic Laboratory for Imaging and Modeling

Our two step matching method

• Step 1: global Fourier matching

$$\mathbf{\hat{f}} = \arg\min_{\mathbf{\hat{g}}} \frac{1}{2} \|\mathbf{\hat{d}} - \mathbf{\hat{g}}\mathbf{\hat{m}}_{\text{predicted}}\|_{2}^{2} + \lambda \|\mathbf{L}_{\mathcal{F}}\mathbf{\hat{g}}\|_{2}^{2}$$

- $L_{\mathcal{F}}$ Fourier-space sharpening operator that promotes smoothness in Fourier domain, which means short in time

$$\tilde{\mathbf{m}}_{\mathrm{matched}} = \mathcal{F}\mathbf{\hat{f}}\mathbf{\hat{m}}$$

• Step 2: Curvelet matching

$$\tilde{\mathbf{b}} = \arg\min_{\mathbf{b}>0} \frac{1}{2} \|\mathbf{d} - \mathbf{C}^T \operatorname{diag} \left(\mathbf{C}\mathbf{m}^0\right) \mathbf{b}\|_2^2 + \gamma \|\mathbf{L}_{\mathcal{C}}\mathbf{b}\|_2^2$$

- $L_{\mathcal{C}}$ curvelet-domain sharpening operator that promotes smoothness

 $\mathbf{m}^0 = \mathbf{\tilde{m}}_{\text{matched}}$

Herrmann '08

Seismic Laboratory for Imaging and Modeling

Seismic Laboratory for Imaging and Modeling

Fourier matched trace

Comparison of reflection at offset 0.4km

Curvelet matched trace

Comparison of reflection at offset 0.4km

Curvelet-based Bayesian Separation

Instead of minus directly, solve the sparsity-promoting program:

$$f(\mathbf{x}_1, \, \mathbf{x}_2) = \lambda_1 \|\mathbf{x}_1\|_{1, \mathbf{w}_1} + \lambda_2 \|\mathbf{x}_2\|_{1, \mathbf{w}_2} + \|\mathbf{C}^{\mathbf{T}}\mathbf{x}_2 - \mathbf{b}_2\|_2^2 + \eta \|\mathbf{C}^{\mathbf{T}}(\mathbf{x}_1 + \mathbf{x}_2) - \mathbf{b}\|_2^2$$

- η Prediction confidence parameter
- λ_1 Expected reflector sparsity
- λ_2 Expected groundroll sparsity

Can be solved by iterative soft thresholding.

Wang, Saab, Yilmaz & Herrmann '08

Yarham, C., and F. J. Herrmann, '08

Seismic Laboratory for Imaging and Modeling

Workflow

Conclusions & future work

- Correlation interferometry can provide data-driven groundroll predictions
- Significant improvements in separation can be made by exploiting curvelet-domain adaptation and sparsity
- Similar workflow with SRME

- Real data example
- Deconvolution interferometry prediction

Acknowledgments

- Dr. Ivan Vasconcelos (ION) for synthetic data
- Demanet, Ying, Candes, Donoho for Curvelab
- S. Fomel, P. Sava, and the other developers of Madagascar
- SLIM group members
- This work was in part financially supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant (22R81254) and the Collaborative Research and Development Grant DNOISE (334810-05) of Felix J. Herrmann. This research was carried out as part of the SINBAD II project with support from the following organizations: BG Group, BP, Petrobras, and Schlumberger.

References

Berkhout, A. J., and D. J. Verschuur, 1997, Estimation of multiple scattering by iterative inversion, part i: Theoretical considerations: Geophysics, 62, 1586–1595.

Cand'es, E. J., L. Demanet, D. L. Donoho, and L. Ying, 2006, Fast discrete curvelet transforms: SIAM Multiscale Model. Simul., 5, 861–899.

Dong, S., R. He, and G. T. Schuster, 2006, Interferometric prediction and least squares subtraction of surface waves: SEG Technical Program Expanded Abstracts, 2783–2786, SEG.

Halliday, D. F., A. Curtis, J. O. A. Robertsson, and D.-J. van Manen, 2007, Interferometric surface-wave isolation and removal: Geophysics, 72, A69–A73.

Herrmann, F. J., U. Boeniger, and D. J. Verschuur, 2007, Non-linear primary-multiple separation with directional curvelet frames: Geophysical Journal International, 170, no. 2, 781–799.

Herrmann, F. J., P. P. Moghaddam, and C. C. Stolk, 2008a, Sparsity- and continuity-promoting seismic imaging with curvelet frames: Journal of Applied and Computational Harmonic Analysis, 24, 150–173. (doi:10.1016/j.acha.2007.06.007).

Herrmann, F. J., D. Wang, and D. J. Verschuur, 2008b, Adaptive curvelet-domain primary-multiple separation: Geophysics, 73, no. 3, A17–A21.

Paige, C. C., and M. A. Saunders, 1982, LSQR, An algorithm for sparse linear equations and sparse least squares: ACM Trans. Math. Software, Volume 8, p. 43-71, 8, 43–71.

Saab, R., D. Wang, O. Yilmaz, and F. Herrmann, 2007, Curvelet-based primary-multiple separation from a bayesian perspective: Presented at the SEG International Exposition and 77th Annual Meeting.

Vasconcelos, I., J. Gaiser, A. Calvert, and C. Calder´on-Mac´ıas, 2008, Retrieval and suppression of surface waves using interferometry by correlation and by deconvolution: SEG Technical Program Expanded Abstracts, 2566–2570, SEG.

Verschuur, D. J., and A. J. Berkhout, 1997, Estimation of multiple scattering by iterative inversion, part II: practical aspects and examples: Geophysics, 62, 1596–1611.

Verschuur, D. J., A. J. Berkhout, and C. P. A. Wapenaar, 1992, Adaptive surface-related multiple elimination: Geophysics, 57, 1166–1177.

Vogel, C., 2002, Computational Methods for Inverse Problems: SIAM.

Wang, D., R. Saab, O. Yilmaz, and F. J. Herrmann, 2008, Bayesian wavefield separation by transform-domain sparsity promotion: Geophysics, 73, no. 5.

Wapenaar, K., and J. Fokkema, 2006, Green's function representations for seismic interferometry: Geophysics, 71, SI33–SI46. Yarham, C., and F. J. Herrmann, 2008, Bayesian ground-roll seperation by curvelet-domain sparsity promotion: SEG Technical Program Expanded Abstracts, 2576–2580, SEG.

True groundroll and interferometry prediction

Prediction of groundroll at offset 0.4km

