
Higher dimensional blue-noise sampling schemes for curvelet-based seismic data recovery
Gang Tang∗, Tsinghua University & UBC-Seismic Laboratory for Imaging and Modeling (UBC-SLIM), Reza Shahidi,
UBC-SLIM, Felix J. Herrmann, UBC-SLIM, and Jianwei Ma, Tsinghua University

SUMMARY

In combination with compressive sensing, a successful recon-
struction scheme called Curvelet-based Recovery by Sparsity-
promoting Inversion (CRSI) has been developed, and has
proven to be useful for seismic data processing. One of the
most important issues for CRSI is the sampling scheme, which
can greatly affect the quality of reconstruction. Unlike usual
regular undersampling, stochastic sampling can convert aliases
to easy-to-eliminate noise. Some stochastic sampling meth-
ods have been developed for CRSI, e.g. jittered sampling,
however most have only been applied to 1D sampling along
a line. Seismic datasets are usually higher dimensional and
very large, thus it is desirable and often necessary to develop
higher dimensional sampling methods to deal with these data.
For dimensions higher than one, few results have been reported,
except uniform random sampling, which does not perform well.
In the present paper, we explore 2D sampling methodologies
for curvelet-based reconstruction, possessing sampling spectra
with blue noise characteristics, such as Poisson Disk sampling,
Farthest Point Sampling, and the 2D extension of jittered sam-
pling. These sampling methods are shown to lead to better
recovery and results are compared to the other more traditional
sampling protocols.

INTRODUCTION

Seismic data volumes are often high dimensional and extremely
large, and incomplete with missing traces due to complex ac-
quisition conditions. Sometimes because of computational or
economical reasons, we also wish to reduce the number of
sources or receivers, i.e. only sample some traces. Thus the
recovery from incomplete data becomes a very important is-
sue. Obviously, in general if samples are added to an already
selected sample set, we obtain higher-resolution reconstructed
data, which is desirable. However, on the other hand, in order
to save measurement costs in the field as well as the com-
putational cost for reconstruction, the fewer samples that are
acquired the better. These two competing requirements lead us
to design sampling methodologies that minimize the number
of samples necessary while at the same time maintaining the
quality of the reconstructed data volume from these samples.
Traditionally, the Shannon/Nyquist sampling theorem states
that it is necessary to sample with at least twice the rate of the
signal’s bandwidth. However this is for uniform regular sam-
pling. A newly developed theory called “compressed sensing”
(CS) (Candès et al., 2006b; Donoho, 2006) provides new in-
sights, and opens the possibility of reconstructing compressible
images or signals of scientific interest accurately from only a
few samples far smaller than the Nyquist rate.

Based on CS theory, a successful recovery method for seismic
data, named Curvelet-based Recovery by Sparsity-promoting

Inversion (CRSI), was developed in Herrmann and Hennenfent
(2008). It is derived from a sparsifying transform in conjunc-
tion with an undersampling scheme that favors recovery. For
the sparsifying transform, it has been proven that curvelets
are a very good choice, with their curve-like basis and well-
documented sparsity for seismic data wavefronts (Candès et al.,
2006a; Herrmann et al., 2007; Ma and Plonka, 2009). When reg-
ular undersampling is used as the underlying sampling scheme
input to this reconstruction, performance is poor due to the
presence of well-known periodic aliases. On the other hand,
stochastic undersampling can render coherent aliases into easy-
to-remove incoherent noise in the frequency domain, so that
CRSI reconstrunction becomes a simple denoising problem.
Unfortunately, the commonly used uniform random sampling
cannot control gap lengths between missing traces, and this
can greatly affect the quality of reconstruction. Thus, jittered
sampling was introduced to mitigate this issue (Hennenfent and
Herrmann, 2007, 2008), so that gap size is limited while at the
same time aliases are converted to noise. Tang et al. (2009) pro-
posed an optimized sampling strategy to improve the sampling
scheme for CRSI. Compared to jittered sampling, it reduces
the spectral leakage and also controls the maximum gap size
directly. But most of these other methods only apply to 1D
sampling, i.e. only sample some traces along one space axis of
the data, as shown in Fig. 1(a). However, most seismic datasets
are higher dimensional, for example, 3D volumes, so sampling
along one axis with a 1D sampling method is not sufficient.
In this paper, some higher dimensional sampling schemes are
presented for use with seismic data interpolation by CRSI, for
example, 2D sampling for 3D (i.e., seismic lines organized into
time-source-receiver volumes) recovery, as shown in Fig. 1(b).
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Figure 1: 25% random samples on time slice: (a) 1D and (b)
2D sampling

In the field of image processing, sampling patterns with blue
noise spectra have been proven to be able to scatter aliasing
artifacts throughout the spectrum out of the signal band as
broad-band noise, which is easily filtered out (Dippé and Wold,
1985; Ignjatovic and Bocko, 2005). Blue noise refers to a signal
whose energy is concentrated at high frequencies with little
energy concentrated at lower non-zero frequencies. Poisson
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Disk sampling and Farthest Point Sampling are two such kinds
of methods, which yield good blue noise spectra. This feature
is very effective to obtain better reconstructions. Fig. 2 shows
the blue-noise frequency features of these methods. We can
see that Poisson Disk sampling, for example, gives a very good
blue-noise spectrum, scattering the noise over a wide band and
making it of low amplitude, so that it is easy to filter out.

(a) (b)

(c) (d)

Figure 2: Spectra of 2D sampling with 10% points: (a) random
sampling, without blue noise spectrum, (b) sub-optimal jittered
sampling, (c) Poisson Disk sampling and (d) Farthest Point
Sampling

With regard to higher dimensional sampling for curvelet-based
seismic data recovery, there are a few papers in the literature.
Herrmann and Hennenfent (2008) used 2D uniform random
sampling while performing 3D interpolation, however their
results are not as good as expected. Knowing that jittered
sampling is better than random sampling in one dimension, it
is natural to extend it to 2D (László, 1995). We found that
by doing this, the results are good but not excellent, as shown
in Fig. 2(b) and Fig. 3(c). Then we would like to introduce
another two types of blue noise sampling schemes, Poisson
Disk sampling (Cook, 1986) and Farthest Point Sampling (Eldar
et al., 1997), which we apply to CRSI in this paper.

CRSI RECONSTRUCTION METHOD

The reconstruction from an incomplete seismic dataset follows
the forward model

y = Rm (1)

where y ∈ Rn represents the acquired incomplete data with
missing traces, m ∈ Rm is the model, to be recovered, i.e. the
adequately sampled data, and R ∈ Rn×m is the restriction oper-
ator that collects the acquired samples from m, m� n. Thus R
is a sampling matrix, on which both the acquired data y, and

the recovery of model m depend. We will present more about
sampling schemes that define this matrix in the next section.

The solutions of 1 are not unique or are acutely sensitive to
changes in the data – this is an underdetermined inverse prob-
lem. In Herrmann and Hennenfent (2008), it was suggested to
reformulate the problem as follows:

y = RCHx, (2)

where C is the curvelet transform and CH is its adjoint— i.e.,
its conjugate transpose, and x ∈RN with N � n is the represen-
tation of m in the curvelet domain. The curvelet transform gives
a sparse representation of m, which means that the vector x has
few non-zero coefficients. These properties make it possible to
successfully recover m according to the theory of compressive
sampling (Candès et al., 2006b; Candès, 2006). However to
solve this underdetermined problem, additional information
must be provided to regularize the problem. The CRSI method
promotes sparsity as a regularization term and gives a solution
to problem 2 by

Pσ :

(ex = argminx ‖x‖1 s.t. ‖RCHx−y‖2 ≤ σem = CHex,

(3)
where ‖x‖1

def=
PN

i=1 |xi| is the `1 norm. The recovered vector
that solves Pσ is ex and em ∈Rm is the estimate of the recovered
data obtained by applying CH . The data misfit is conditioned
by σ , which is linked to the noise variance. In our case there is
no noise, so σ = 0.

SAMPLING METHODS

From traditional sampling theory, we know that, with regular
sampled points, aliasing will occur at frequencies higher than
the Nyquist limit, due to the regular and periodic nature of the
sampling. If we sample in an irregular manner to make the
sizes of unsampled regions incoherent with each other, these
aliases can be converted into easy-to-remove noise. Stochastic
sampling is a way of achieving this, by distributing samples
randomly, so that every point has a finite probability of being
sampled (Dippé and Wold, 1985). There are many kinds of
stochastic samplings that have been developed. In this paper,
we concentrate on three such schemes, Poisson Disk sampling,
Farthest Point Sampling, as well as the extension of jittered
sampling to 2D, all of which have blue noise sampling spectra.

Pure uniform random sampling, where each location on a grid
has exactly the same probability of being chosen, is too ran-
dom since it cannot control the size of gaps between samples.
Such pure random sampling converts aliases into white noise
in the frequency domain, as shown in Fig. 2(a), which in fact
is very difficult to remove. On the other hand, uniform jittered
sampling first subdivides the space into n regions, with n the
predetermined number of samples we wish to take, and then
randomly takes one sample in each region. Because each region
is sampled, and the regions form a partition of the space (they
are contiguous) , the size of gaps can be controlled to some
extent and a blue noise spectrum is obtained, as in Fig. 2(b).
However, often the samples cluster. Poisson Disk sampling can
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solve these problems. It selects n points at random iteratively,
and only keeps a sample if it is a sufficient distance away from
all previously selected samples. This also leads to a blue noise
spectrum. Finally, Farthest Point Sampling is another irregular
sampling scheme with excellent anti-aliasing properties, and is
based on the computational geometry concept of the Voronoi
diagram (Eldar et al., 1997). The main idea for that scheme,
as suggested by its name, is to repeatedly place the next sam-
ple point to be the farthest point from all previously selected
samples. This ensures that there are no regions of the image
that are not adequately sampled, while at the same time, some
randomness is maintained by initially selecting a small number
of randomly selected seed samples.

RESULTS

First, we applied these three sampling methods to 1D recon-
struction, recording the SNR with different percentages of sam-
ples. We define SNR = 20log10

‖ f0‖2
‖ f− f0‖2

, where f0 is the original
data, and f is the interpolated data.

As shown in Fig. 4, both Poisson and Farthest Point Sampling
give higher SNRs than uniform random sampling. Following
that we show results for Poisson Disk sampling as an example
of how a stochastic sampling scheme with blue noise charac-
teristics leads to good results from the CRSI reconstruction
process.

Then 2D Poisson Disk sampling is applied to a time slice, as
shown in Fig. 3. Poisson Disk sampling gives better reconstruc-
tion than pure uniform random sampling, and also somewhat
better than 2D jittered sampling.

(a) (b)

(c) (d)

Figure 3: (a) time slice model, and recoveries from 25% sam-
ples by 2D sampling of (b) random, SNR = 9.979, (c) jittered,
SNR = 10.594 and (d) Poisson Disk, SNR = 10.931

Finally we applied these methods to higher dimensional cubes,
which are always very large, necessitating a strategy to recon-
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Figure 4: SNR, with different numbers of sampling points

struct them from as few traces as possible, in order to design
seismic data acquisition with less shots or receivers. Here we
only sample 25% of the total traces with random and Poisson
Disk sampling methods, then do the recovery by CRSI. As
shown in Fig. 5, Poisson Disk sampling is much better than
uniform random sampling.

CONCLUSIONS

In this paper, we explored some sampling schemes with blue-
noise patterns for curvelet-based interpolation. We extended
jittered sampling to 2D, and introduced Farthest Point and
Poisson Disk sampling into the reconstruction. From the com-
parisons between these methods, including uniform random
sampling, we know that 2D jittered sampling is still better than
uniform random sampling, while Farthest Point and Poisson
Disk sampling often give better results over jittered sampling.
We applied these methods, choosing Poisson Disk sampling
as an example, to 2D and 3D seismic data interpolation by
CRSI, and obtained very good results, as compared to methods
previously used in the literature.

The present work mainly used CRSI, where the curvelet trans-
form is regular. However it is also possible use the non-equispaced
fast discrete curvelet transform (NFDCT), which leads to a
method called non-uniform CRSI (NCRSI). We are currently
developing NCRSI for higher dimensions, in combination with
the non-equispaced curvelet transform, and results from this
higher-dimensional NCRSI will be presented in a future work
along with extensions to adaptive sampling, where prior infor-
mation on the image is used to more heavily sample image
regions containing more information, e.g. edges.
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(a) (b)

(c) (d)

Figure 5: Sampled 3D data with 75% missing traces by: (a) random sampling (b) Poisson Disk sampling, (c), (d) are recovered by
CRSI from (a) and (b) separately
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