

Unified compressive sensing framework for simultaneous acquisition with primary estimation

Tim T.Y. Lin* jointly with Felix J. Herrmann special thanks to G.J. van Groenestijn and Eric Verschuur

University of British Columbia

presented Oct 28, 2009 *timtylin@gmail.com

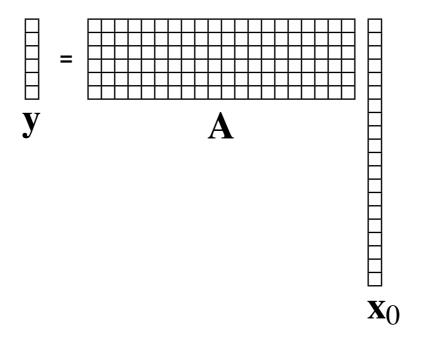
key points

- 1) Establish seismic demultiplexing as a non-linear inversion process
 - (Using techniques from aperture encoding, etc)
- 2) In that same process, also remove surfacerelated multiples via primary estimation
- 3) Joint inversion better than separate processing

outline

- Simultaneous acquisition as compressive sensing
- II. Inverting compressively sensed data
- III. Primary estimation as inversion
- IV. Joint CS and primary estimation inversion

Compressed sensing



Is it possible to recover \mathbf{x}_0 accurately from \mathbf{y} ?

(Candes, Romberg, Tao, 2006; Wakin, Baraniuk, Laska, 2006, Lustig, Donoho, Pauly, 2006)

matrix view

receiver position

shot position

Green's function

it's linear algebra

$$\mathbf{D} = \left[\begin{array}{c} \mathbf{Q} \\ \mathbf{Shot} \end{array} \right] \underbrace{\mathbf{Recv}}_{\mathbf{Recv}}$$

represents acquisition of data

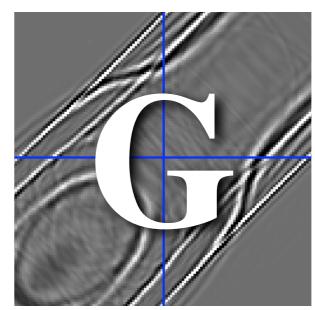
eg: ideal coverage

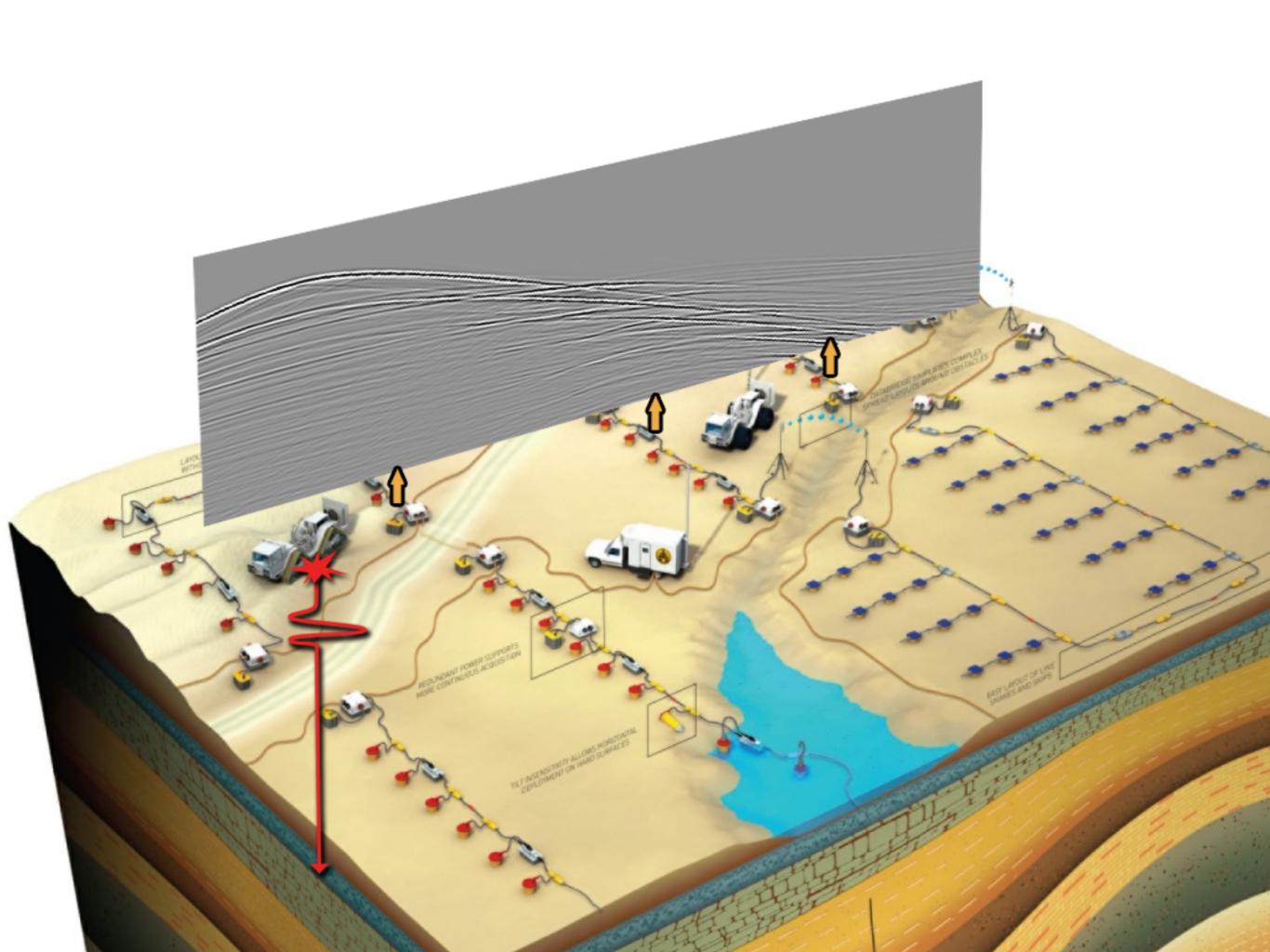
$$\mathbf{D} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$
identity matrix

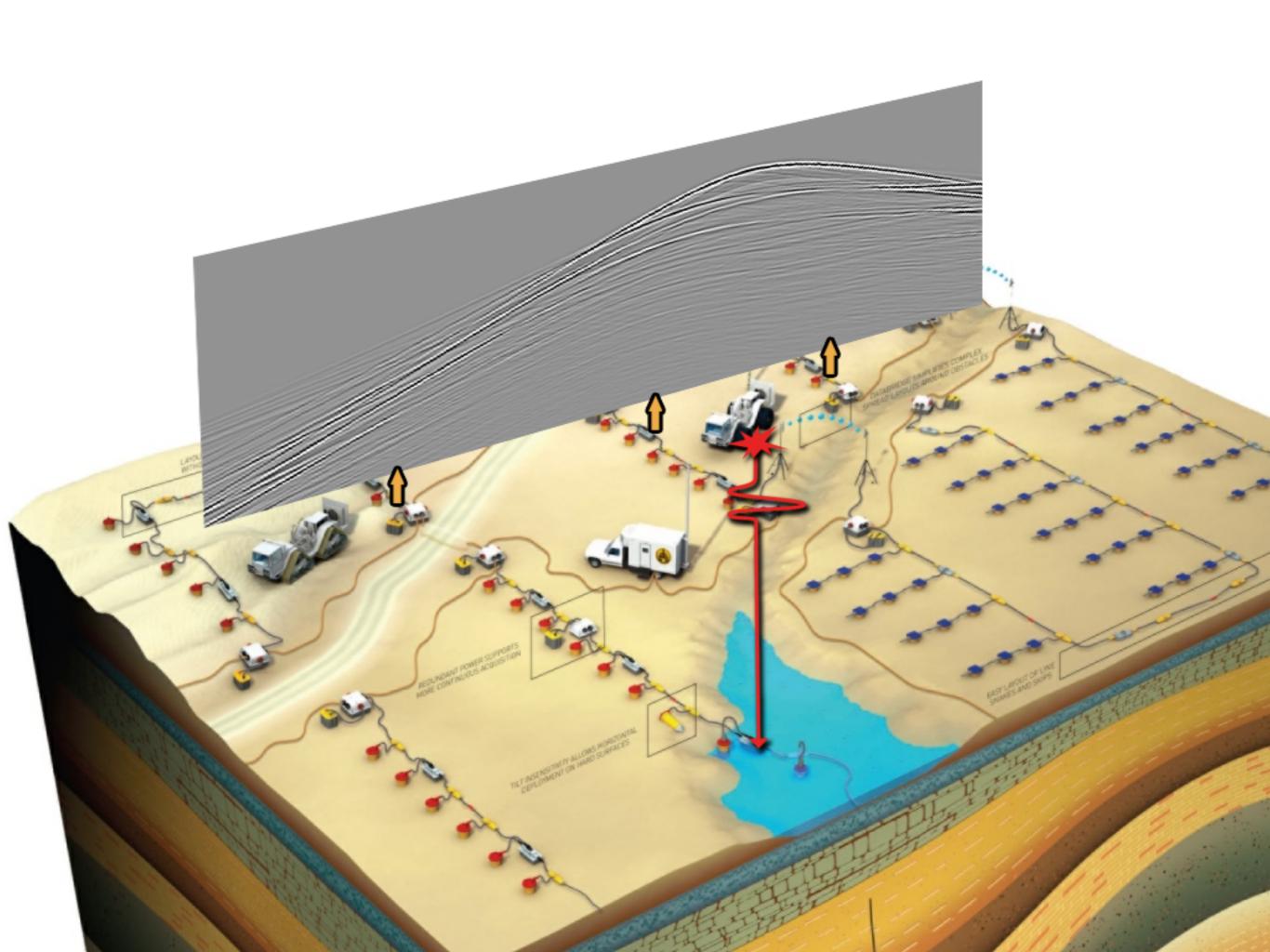
eg: 2x undersampled shots

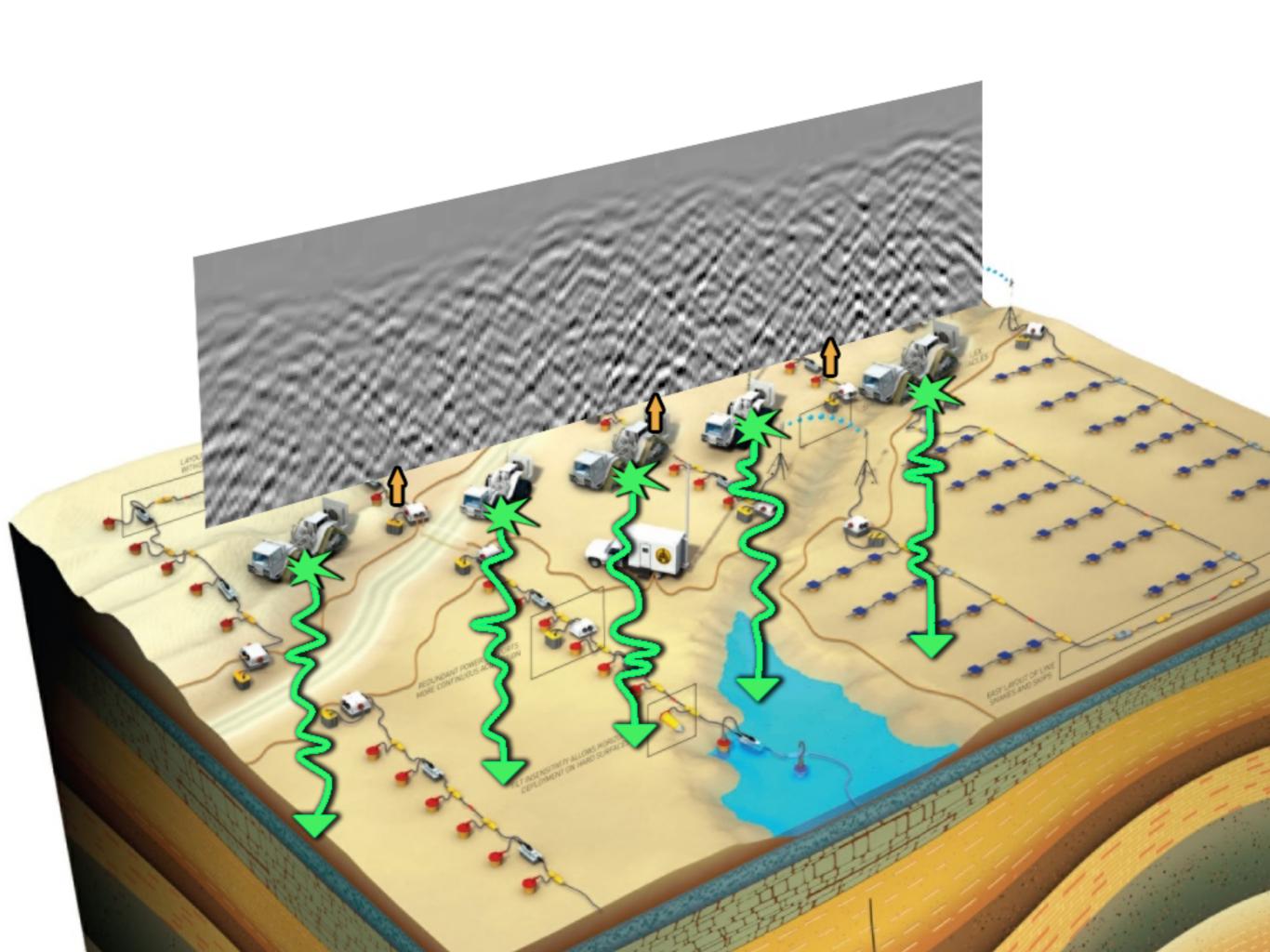
eg: Blend every other shot

$$\mathbf{D} = \begin{bmatrix} 11 \\ 11 \\ 11 \end{bmatrix}$$









Compressed sensing

conditions:

- A obeys the *restricted isometry principle*
- \mathbf{x}_0 is sufficiently sparse

procedure:

$$\underbrace{\min_{\mathbf{x}} \|\mathbf{x}\|_{1}}_{\mathbf{x}} \quad \text{s.t.} \quad \underbrace{\mathbf{A}\mathbf{x} = \mathbf{y}}_{\mathbf{perfect reconstruction}}$$

performance:

 S-sparse vectors recovered from roughly on the order of S measurements (to within constant and log factors) RIP for $k \leq m \ll n$

$$(1 - \delta_k) \|\mathbf{x}_T\|_{\ell_2} \le \|\mathbf{A}_T \mathbf{x}\|_{\ell_2} \le (1 + \delta_k) \|\mathbf{x}_T\|_{\ell_2}$$

$$m \begin{bmatrix} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ \end{pmatrix}$$

RIP for $k \leq m \ll n$

\mathbf{A}_{T} how close is it to an orthonormal basis?

(if close enough, then if $NNZ(\mathbf{x}) \leq k/2$, $\mathbf{x_0} = \mathbf{x}$ with overwhelming probability)

bad, bad examples

$$A = \begin{bmatrix} 10 \\ 10 \\ 10 \end{bmatrix}$$

(2x shot undersampling)

bad, bad examples

$$\mathbf{A} = \begin{bmatrix} 11 \\ 11 \\ 11 \end{bmatrix}$$

(Blend every-other shot)

good example

(Completely blended shots)

Compressed sensing

Some popular choices for A in literature

- Restricted random gaussian projections
- Restricted random phase encoding $\mathcal{O}(n \log n)$
- Restricted random signs projections
- Restricted Fourier transform

Call these kinds of matrices ${f RM}$ for literature consistency

Enforcing sparsity

$$A = RMS^{T}$$

Using Curvelet transform for shot and receiver coordinates

Frequency-domain restrictions perform well under Wavelet transform for seismic data (Lin et. al. '08)

Spatial-domain restrictions perform well under **Curvelet** transform for seismic data (Hennefent et. al. '07)

Combine both transforms in the coordinate they are most suited for

Wavelet sparsity on temporal-frequency coordinate

2D Curvelet sparsity on shot and receiver plane

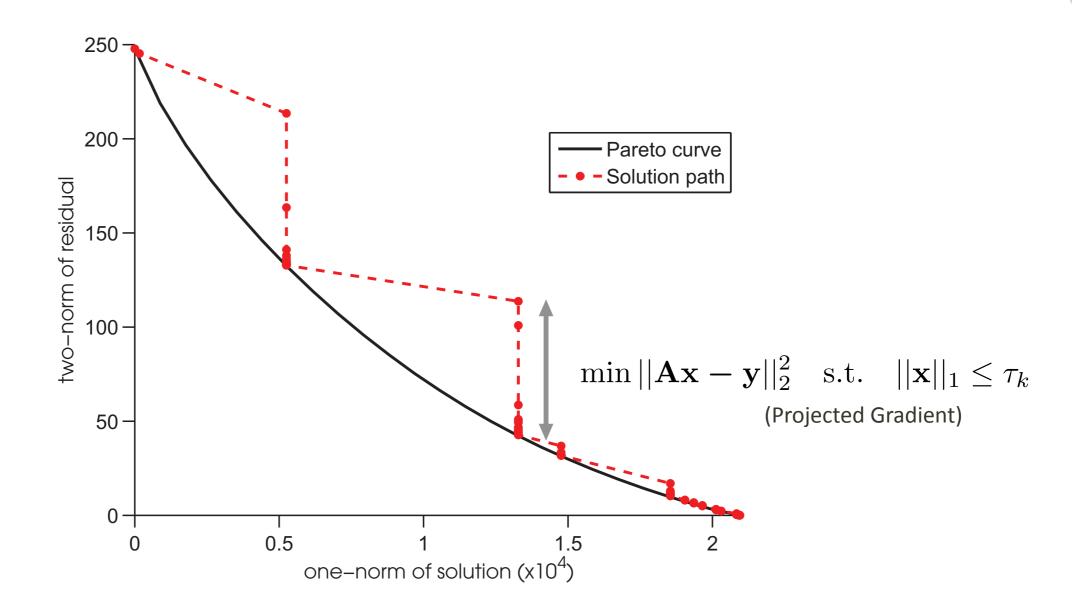
$$\mathbf{S} = \mathbf{C}_{2d} \otimes \mathbf{W}$$

L1 minimization

$$\min ||\mathbf{x}||_1$$
 s.t. $\mathbf{A}\mathbf{x} = \mathbf{y}$

Use SPGI1 (van den Berg, Friedlander, 2008)

- a projected gradient based method (seismic data-volumes are huge)
- uses root-finding to find the final one-norm



dsp.ece.rice.edu/cs

I1-Magic SparseLab GPSR ell-1 LS sparsify

solvers, Jun 2007

```
Bayesian
SPGL1
sparseMRI
FPC
```

IMPIN

Chaining Pursuit Regularized P. ece.rice.edu/cs

TWIST

Fast CS using

SRM

FPC AS

Fast Bayesian

Matching Pursuit

SL0

PPPA

CoSAMP

CS via belief prop

SpaRSA

KF-CS: Kalman

Filtered CS

Eact Payocian CC

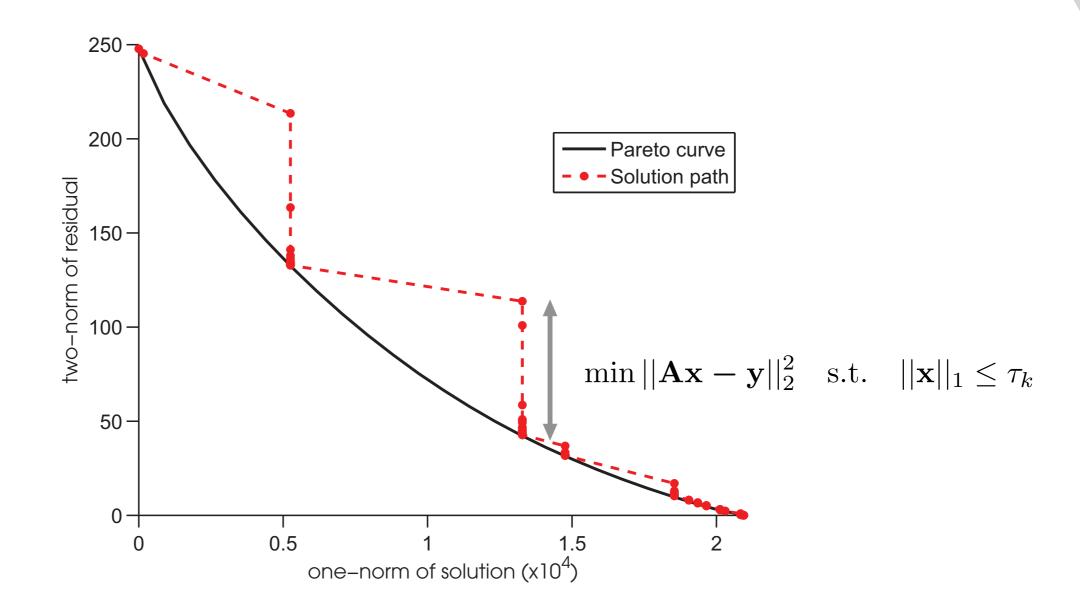
solvers, Jun 2009

L1 minimization

$$\min ||\mathbf{x}||_1$$
 s.t. $\mathbf{A}\mathbf{x} = \mathbf{y}$

Use SPGI1 (van den Berg, Friedlander, 2008)

- a projected gradient based method (seismic data-volumes are huge)
- uses root-finding to find the final one-norm

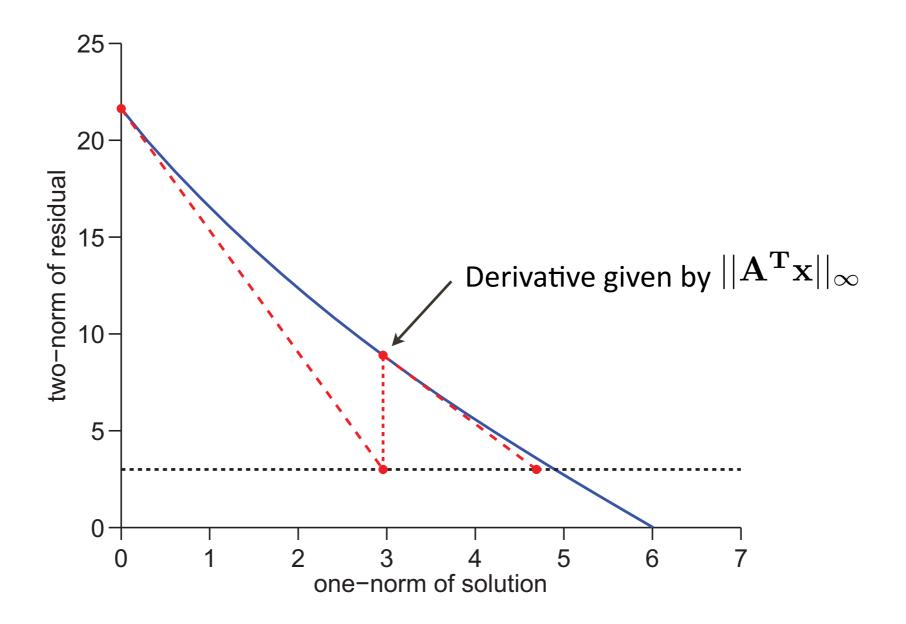


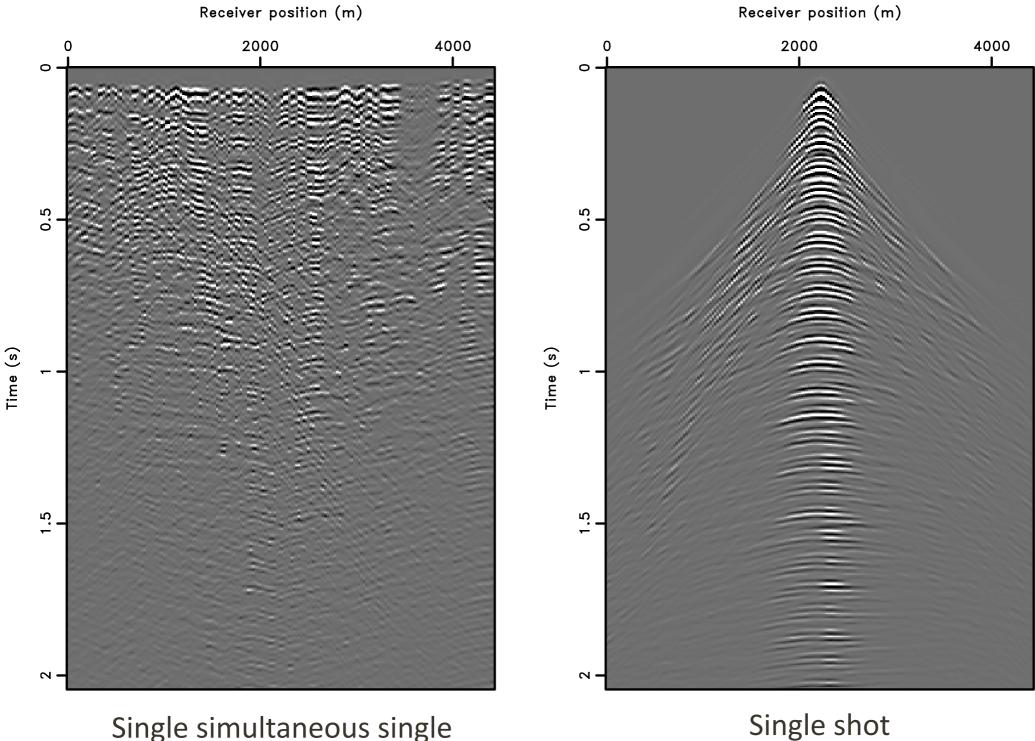
L1 minimization

$$\min ||\mathbf{x}||_1$$
 s.t. $\mathbf{A}\mathbf{x} = \mathbf{y}$

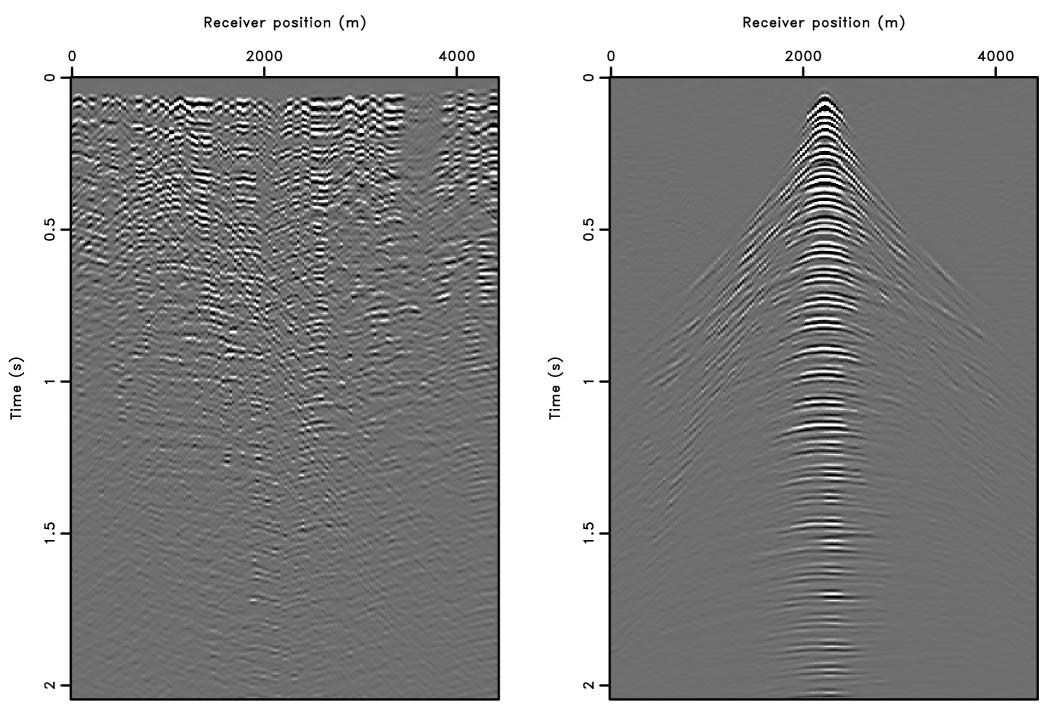
Use SPGI1 (van den Berg, Friedlander, 2008)

- a projected gradient based method (seismic data-volumes are huge)
- uses root-finding to find the final one-norm





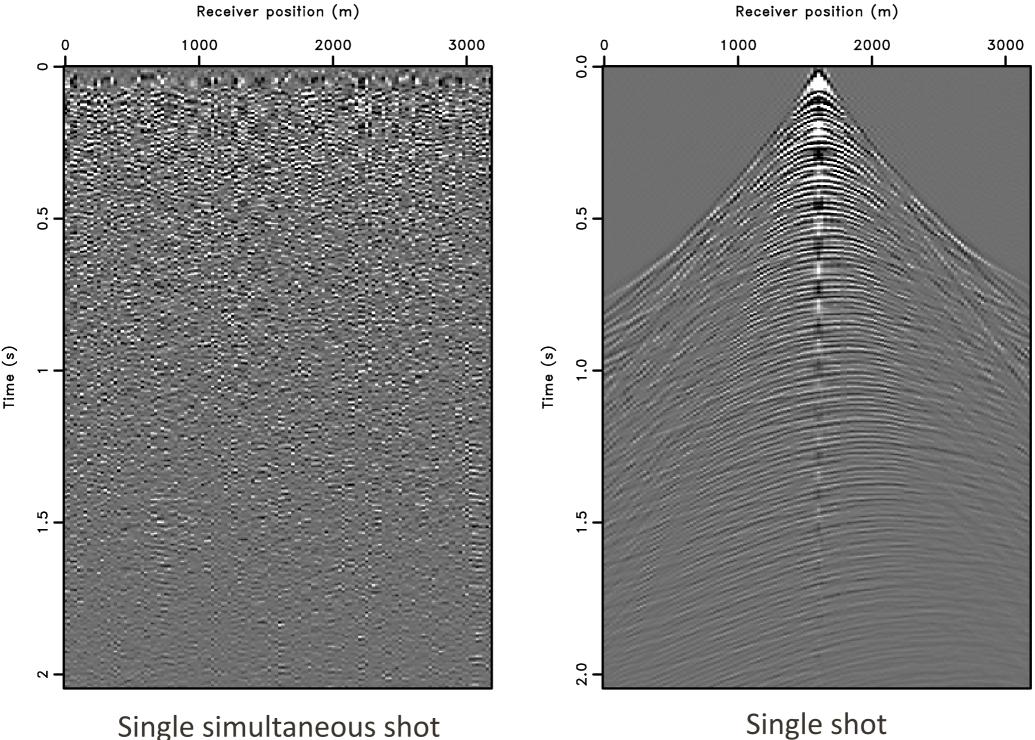
Single simultaneous single



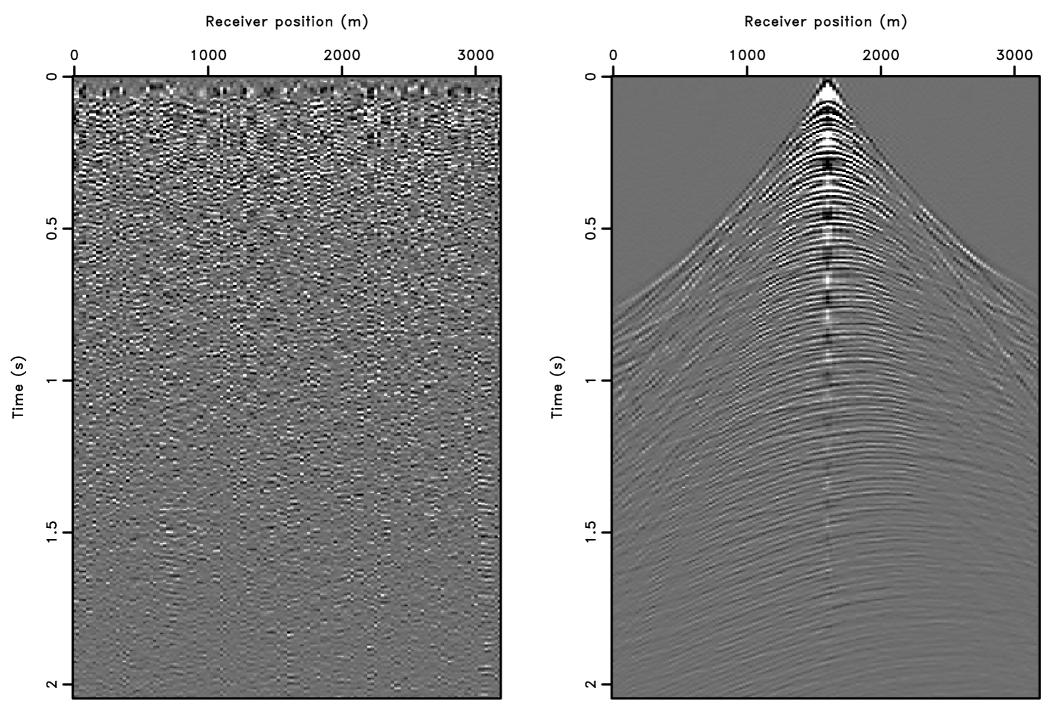
Single simultaneous shot

recovered from 25% number of realizations

~100 projected gradient



Single simultaneous shot

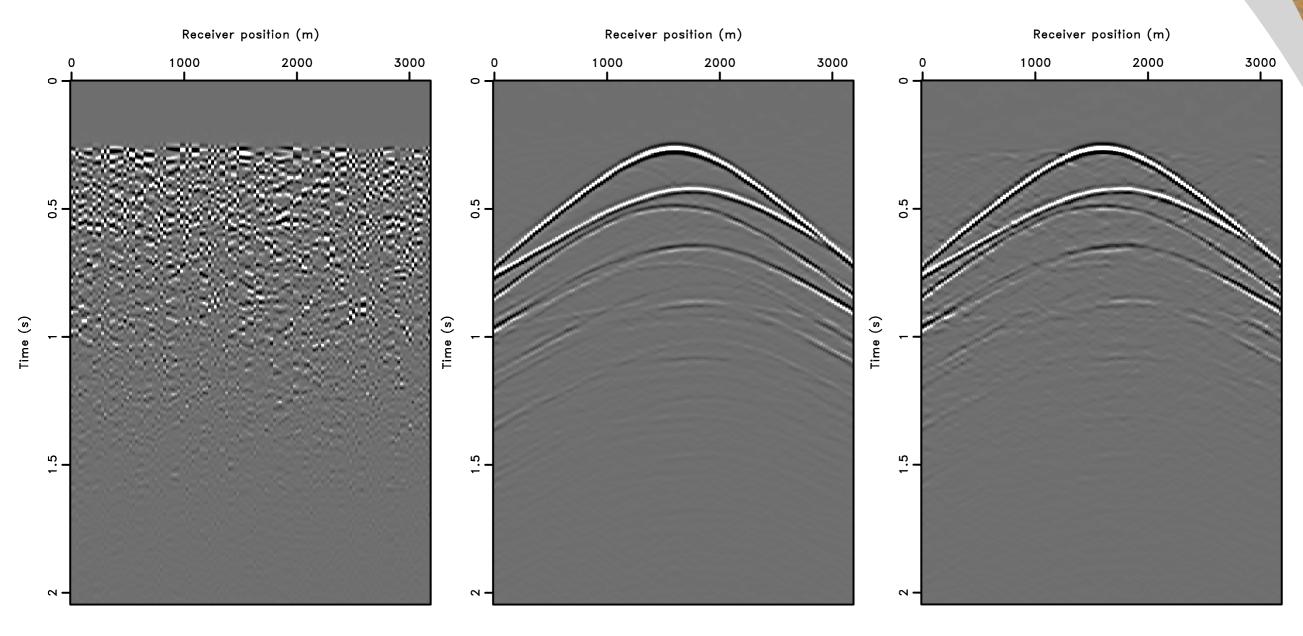


Single simultaneous shot

recovered from 25% number of realizations

~100 projected gradient

Reconstruction from different number of realizations of simultaneous simulation (measured in % of number of single-shots)



Single simultaneous shot

30% number of realizations

20% number of realizations

~100 projected gradient

Primary estimation

EPSI

Estimation of Primaries by Sparse Inversion (van Groenestijn and Verschuur, 2009)

- -based on Amundsen inversion, division of up/down going wavefields
- -additional sparsity regulation in the inversion process

$$P^- = X_o(S^+ + RP^-)$$

- ${f P}^-$ total up-going wavefield
- S⁺ down-going source signature
- ${f R}$ reflectivity of free surface (assume -1)
- $\mathbf{X_o}$ primary impulse response (all single-frequency slices, implicit ω)

EPSI

Uses sparsity assumption on ${f X_o}$

minimize
$$\max_{\mathbf{S^+}, \mathbf{X_o}} |\max(\mathbf{X_o})$$
 s.t. $||\mathbf{P^-} - \mathbf{X_o}(\mathbf{S^+} + \mathbf{RP^-})||_2^2 \le \sigma$

But approximates the solution with k iterations of projected gradient

minimize
$$||\mathbf{P}^{-} - \mathbf{X}_{\mathbf{o}}(\mathbf{S}^{+} + \mathbf{R}\mathbf{P}^{-})||_{2}^{2}$$
 s.t. $\operatorname{nnz}(\mathbf{X}_{\mathbf{o}}) \leq \frac{7}{k}$

Nonetheless, a non-convex problem:

- existence of local minima
- no convergence guarantees

Compressed sensing

conditions:

- A obeys the *restricted isometry principle*
- \mathbf{x}_0 is sufficiently sparse

procedure:

$$\underbrace{\min_{\mathbf{x}} \|\mathbf{x}\|_{1}}_{\mathbf{x}} \quad \text{s.t.} \quad \underbrace{\mathbf{A}\mathbf{x} = \mathbf{y}}_{\mathbf{perfect reconstruction}}$$

performance:

 S-sparse vectors recovered from roughly on the order of S measurements (to within constant and log factors)

Convex relaxation

Use L1-norm relaxation for the sparsity objective

minimize
$$||\mathbf{X_o}||_1$$
 s.t. $||\mathbf{P^- - X_o(S^+ + RP^-)}||_2^2 \le \sigma$

Bi-convex problem, but turns into two convex problems we know how to solve via alternating optimization

- -Standard approach in blind image deconvolution
- -no need for windowing primary events at each iteration

Convex relaxation

Use L1-norm relaxation for the sparsity objective

minimize
$$||\mathbf{X_o}||_1$$
 s.t. $||\mathbf{P^- - X_o}(\mathbf{S_k^+ + RP^-})||_2^2 \leq \sigma$

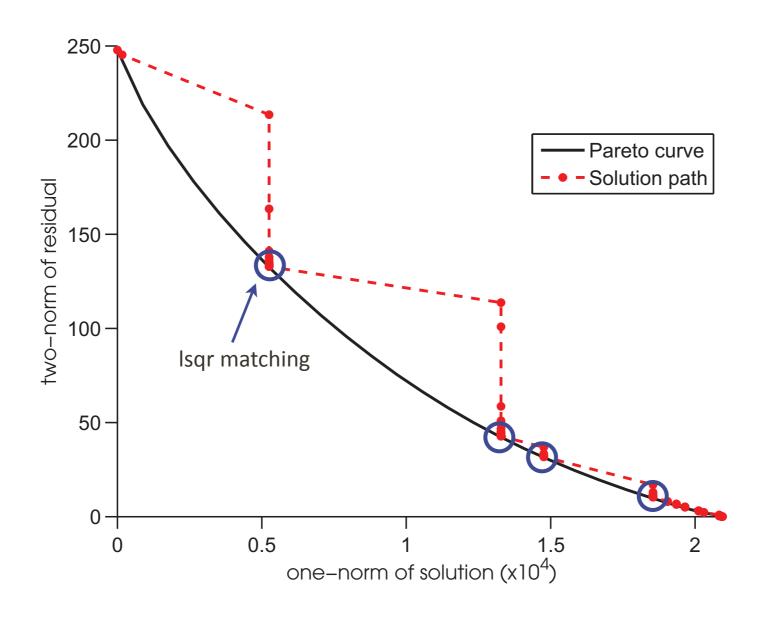
Fix source signature, turns into L1-minimization (SPGI1)

Convex relaxation

Use L1-norm relaxation for the sparsity objective

minimize
$$||\mathbf{X}_{\mathbf{O}k}||_1$$
 s.t. $||\mathbf{P}^- - \mathbf{X}_{\mathbf{O}k}(\mathbf{S}^+ + \mathbf{R}\mathbf{P}^-)||_2^2 \leq \sigma$

Fix primary impulse response, get least-squares matching for ${f S}^+$ upto tolerance $\,\sigma\,$



In SPGI1 solution path, do least-square matching of source everytime we reach an optimal solution along pareto

all together now

$$P^- = X_o(S^+ + RP^-)$$

Define linear operator P:

$$\mathbf{P}\mathbf{x} := \mathcal{F}_{\omega}^{-1} \left[(\mathcal{F}_{\omega}\mathbf{x})(\mathbf{S}^{+} + \mathbf{R}\mathbf{P}^{-}) \right]$$

all together now

And then composite together RM and P

$$A = RMPS^{T}$$

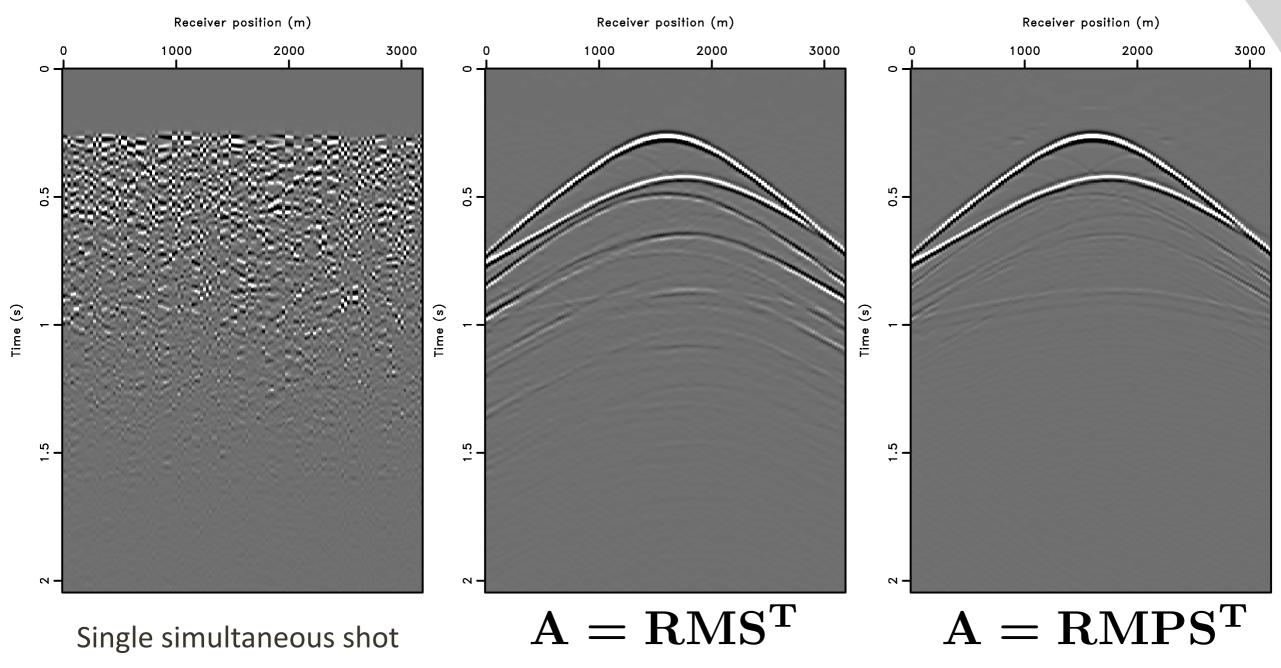
Solve CS problem

$$\min ||\mathbf{x}||_1$$
 s.t. $||\mathbf{y} - \mathbf{A}\mathbf{x}||_2^2 \le \sigma$

 ${f y}$ is data measured according to ${f RM}$

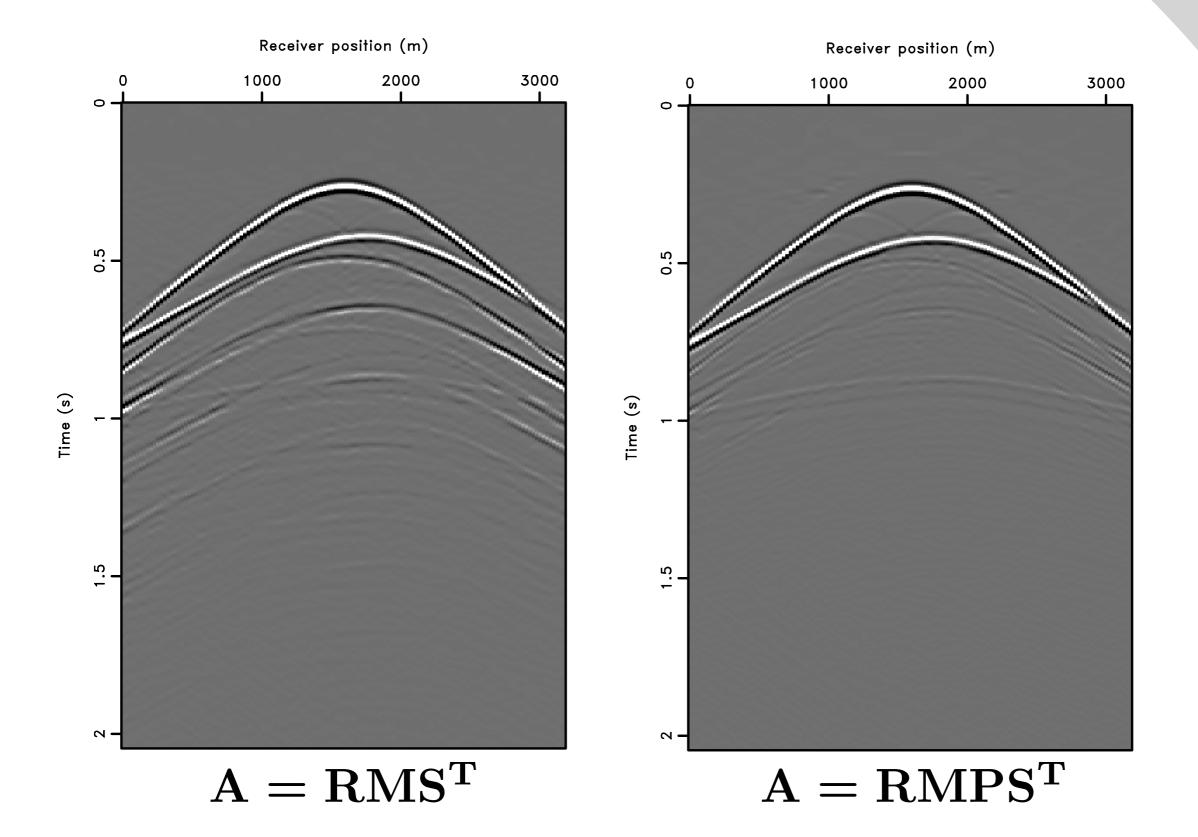
- -Demultiplex and EPSI now share the same solver and the same overhead
- -Primary is sparser than full data
- -CS predicts less measurement needed for same quality

all together now

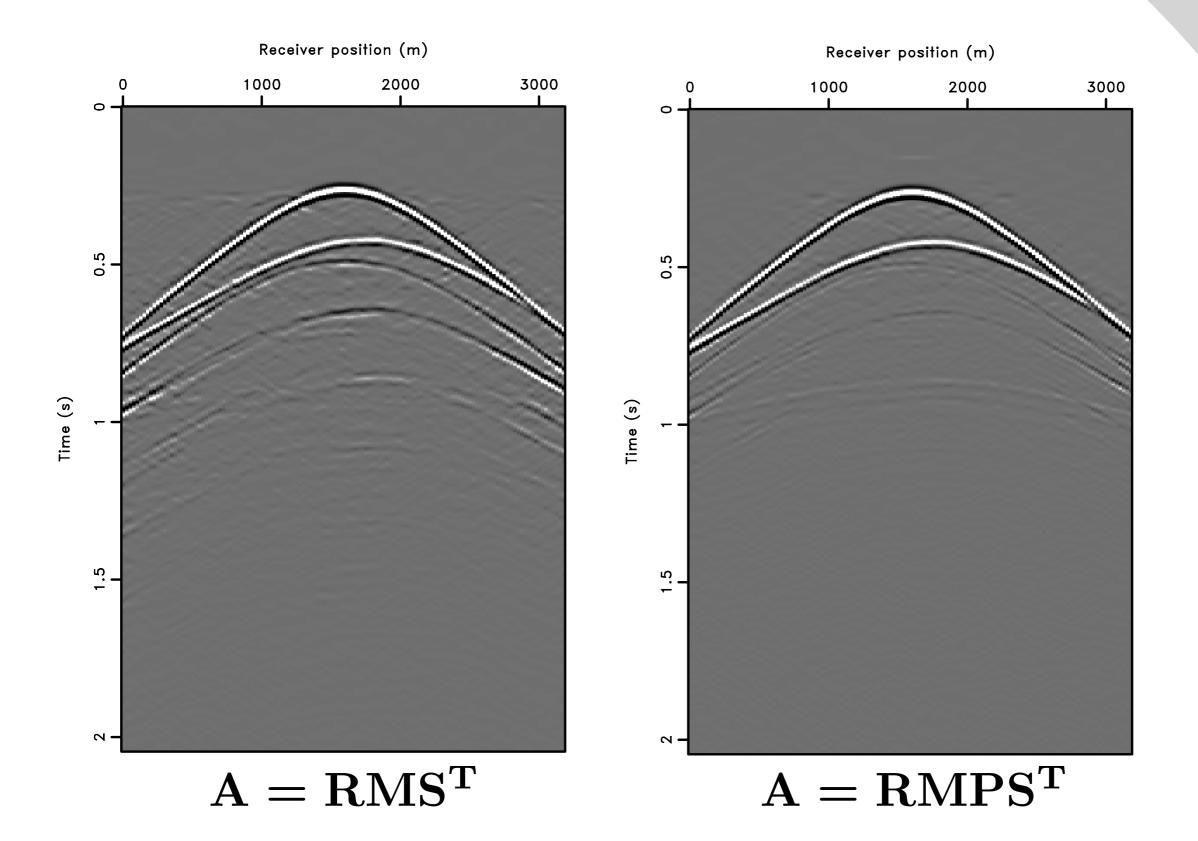


~100 projected gradient, 5 source matching

50% measurement

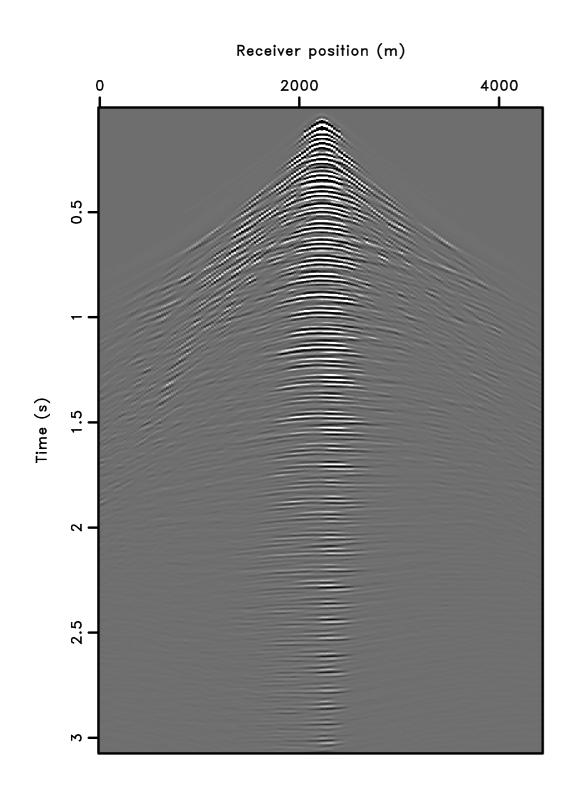


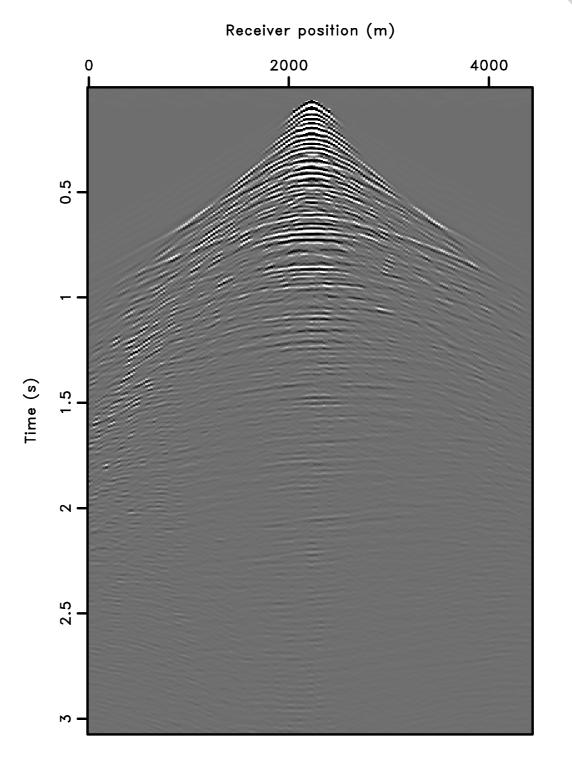
20% measurement



EPSI-L1

Gulf of Suez data 1024x178x178

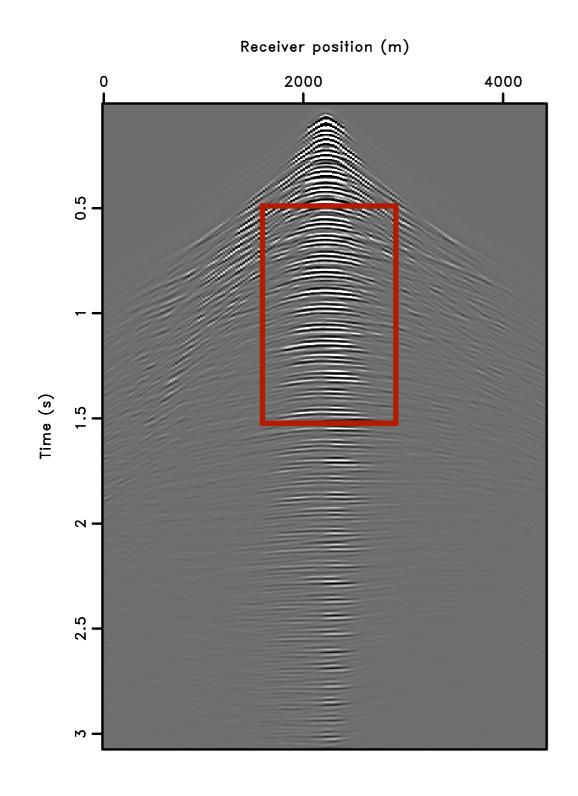


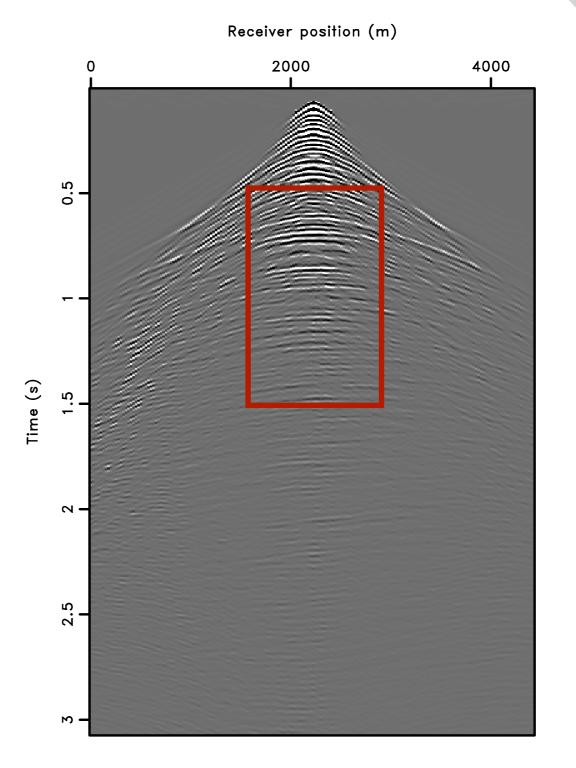


~100 projected gradient, 5 source matching

EPSI-L1

Gulf of Suez data 1024x178x178

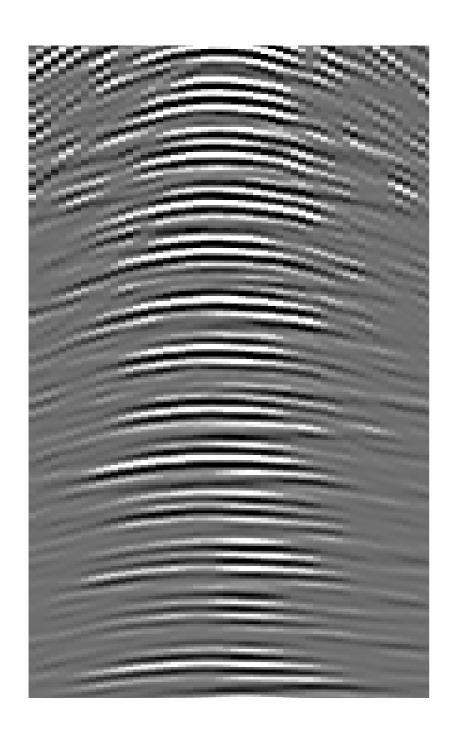




~100 projected gradient, 5 source matching

EPSI-L1





~100 projected gradient, 5 source matching

acknowledgements

Special thanks to G.J. van Groenestijn, Eric Verschuur, and the rest of the memebers of DELPHI

This work was in part financially supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant (22R81254) and the Collaborative Research and Development Grant DNOISE (334810-05) of Felix J. Herrmann. This research was carried out as part of the SINBAD II project with support from the following organizations: BG Group, BP, Petrobras, and Schlumberger.