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SUMMARY

The central promise of simultaneous acquisition is a vastly
improved crew efficiency during acquisition at the cost of addi-
tional post-processing to obtain conventional source-separated
data volumes. Using recent theories from the field of com-
pressive sensing, we present a way to systematically model
the effects of simultaneous acquisition. Our formulation form
a new framework in the study of acquisition design and natu-
rally leads to an inversion-based approach for the separation of
shot records. Furthermore, we show how other inversion-based
methods, such as a recently proposed method from van Groen-
estijn and Verschuur (2009) for primary estimation, can be
processed together with the demultiplexing problem to achieve
a better result compared to a separate treatment of these prob-
lems.

INTRODUCTION

The physical limitations of seismic data acquisition have tra-
ditionally been one of the strongest driving forces behind the
development of signal processing techniques. Well-known ex-
amples of this include interpolation, a post-processing step
called seismic regularization, and deconvolution for the (sweep)
source functions. Similarly, the high cost of acquisition work
compels the adoption of simultaneous acquisition. Aimed at
improving the performance of marine- and land-acquisition
crews, simultaneous acquisition calls for development of a new
set of design principles and post-processing tools. In this paper,
we focus on new techniques to separate (demultiplex) simulta-
neously acquired data (Beasley, 2008; Krohn and Neelamani,
2008; Berkhout, 2008; Neelamani et al., 2008; Herrmann et al.,
2009).

In our approach, we leverage developments from the field of
compressive sensing (CS in short throughout the paper, Candès
et al., 2006; Donoho, 2006)—where the argument is made,
and rigorously proven—that compressible signals can be recov-
ered from severely sub-Nyquist sampling by solving a sparsity
promoting program. The CS approach differs from most si-
multaneous acquisition/recovery schemes because it combines
three indispensable components namely, (i) the design of sub-
sampling schemes that turn coherent sub-sampling interfer-
ences into harmless Gaussian-like noise (see e.g. Hennenfent
and Herrmann (2008), where this principle is used to recover
seismic data volumes from missing traces with curvelet-domain
sparsity), (ii) the selection of a sparsifying domain (such as
curvelets) in which the data can be represented parsimoniously,
and (iii) the use of sparsity-promoting programs to recover the
source-separated data volumes. As long as a sampling/recovery
scheme adheres to this principles (this is not true for the ma-
jority of the current simultaneous acquisition strategies where
typically one of the components is missing), CS guarantees re-
covery to high fidelity as long as the degree of sub-sampling is
commensurate with the transform-domain sparsity. This means

that sparser signals allow for larger degrees of subsamplings
as long as these subsamplings are carried out according to CS
principles.

By using CS principles, we present a rigorous framework for
simultaneous acquisition and subsequent recovery by sparsity
promotion. For the actual design of the subsampling scheme,
we are motivated by recent work of Neelamani et al. (2008),
and Herrmann et al. (2009) where phase-encoded simultaneous
sources were used to reduce the computational cost of wavefield
simulations. Difference, here is that we include a sweep func-
tion that makes our methodology relevant for land acquisition
with vibroseis trucks. We use the principle of superposition,
which allows us to work with simultaneous sources where all
sources are firing.

SIMULTANEOUS SOURCES AS A CASE OF COMPRES-
SIVE SENSING

Compressive sensing (CS) theory proves that recovery through
sparsity promotion is possible from a sample size m that is
proportional to the signal’s sparsity (here, the number of non-
zeros, k) as opposed to the signal length N. The main contri-
bution of this paper is to recognize simultaneous acquisition
as an instance of compressive sensing and taking advantage
of it in our formulation of the simultaneous acquisition prob-
lem. The benefits afforded by a well-designed subsampling
scheme designed according to the compressive sensing frame-
work are (i) an improved demultiplexing into source-separated
data volumes by recovery through transform-domain sparsity
promotion, and (ii) compression of imaging operators through
a reduction of the number of sources (i.e., number of right-hand
sides for the wavefield simulators ) and number of frequencies
per simultaneous source (i.e., the number of block-diagonals in
the discretization of the Helmholtz equation) (Herrmann et al.,
2009). Before discussing an example of practical source design
for this subsampling scheme, let us first review the different
components that allow us to recover from simultaneous data.

The compressive-sampling matrix: The success of com-
pressive simulation depends on devising a subsampling of the
physically distinct source and frequency axes where coher-
ent interferences are turned into random noise (Hennenfent
and Herrmann, 2008). We follow recent work by Romberg
(2008) and implement the CS matrix through a random phase
encoder in Fourier space. To maximize independence amongst
the sources, we apply different restrictions for each of the n′s
simultaneous shots—i.e., we have
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with Ft the Fourier transform in the time axis, and Fsr the 2D-
Fourier transform in the shot-receiver plane. θθθ is a randomly
determined phase chosen from Uniform([0,2π]). The matrices
RΩ and RΣ represent CS-subsampling operators acting along
the rows (frequency coordinate) and columns (shot coordinate)
of the data volume, respectively. As shown by Herrmann et al.
(2009) application of this CS-sampling matrix, RM, to the data
is equivalent to applying it to the source wavefields directly
turning single-source shots into a subset (n′s � ns with ns the
number of separated single-source shots) of time-harmonic si-
multaneous sources that are randomly phase encoded and that
have, for each simultaneous shot, a different set of angular fre-
quencies missing—i.e., there are n′f � n f (with n f the number
of frequencies of fully sampled data) frequencies non-zero.

The sparsfying transform: Aside from proper CS sampling
the recovery from simultaneous simulations depends on a spar-
sifying transform that compresses seismic data, is fast, and
reasonably incoherent with the CS sampling matrix. We ac-
complish this by defining the sparsity transform as the Kro-
necker product between the 2-D discrete curvelet transform
(Candès et al., 2006) along the source-receiver coordinates, and
the discrete wavelet transform along the time coordinate—i.e.,
S := C⊗W with C, W the curvelet- and wavelet-transform
matrices, respectively. The choice of using a wavelet represen-
tation in the time domain is justified by the high incoherence
between the wavelet dictionary and the discrete Fourier trans-
form (Herrmann et al., 2009). This makes wavelets a more
ideal sparsity basis for reconstruction from missing frequencies
according to CS theory.

Recovery by sparsity promotion: As prescribed by CS the-
ory, we reconstruct the seismic wavefield by solving the follow-
ing nonlinear but convex optimization problem

ex = argmin
x

‖x‖1 subject to ‖y−Ax‖2 < ρ, (2)

with ed = S∗ex recovered data, A := RMS∗ the CS matrix, y the
simultaneously acquired data, and ρ a tolerance level on noise.
This is solved with SPG`1, a projected-gradient algorithm with
root finding (Berg and Friedlander, 2008).

Comparison of interpolation and demultiplexing The op-
timization problem in Eq. 2 can also be used to describe a
type of interpolation process called Curvelet Reconstruction
by Sparsity-promoting Inversion (CRSI) discussed at length in
Hennenfent and Herrmann (2008). In summary, the method
prescribes solving Eq. 2 with A := RS∗ with S the 3D Curve-
let transform and R acting only on either the receiver location
(missing traces) or the shot location (missing shots), chosen in a
special way as to minimize the effects of coherent interference
from downsampling. CRSI can be interpreted as a method to
deal with undersampled shots by interpolating missing data,
while the approach presented in this abstract can be seen as
dealing with undersampled shots by separating them out of
records that also contain signals from all other shot locations.

It is interesting to compare the results possible from both meth-
ods using the same inversion algorithm. Fig. 1 shows the recov-
ery from 50% undersampled shots on a synthetic dataset using
both CRSI and the approach presented in this abstract. The
much higher SNR achieved from the demultiplexing approach
strongly suggests that this is a better posed problem compared
to an interpolation based approach.

INCORPORATION OF THE SOURCE SIGNATURE

Even though the above sampling scheme is viable as-is for for-
ward modeling simulations, straightforward application of this
scheme to seismic acquisition is impractical. The main hurdle is
the fact that vibroseis trucks have physical constraints that limit
the type of source functions they can emit. To incorporate this
limitation into the model, we slightly refine the CS-sampling
matrix defined in Eq. 1 by replacing the identity matrix I in the
phase encoder with Ψ = diag{ψ}, where ψ is a discretization
of a pre-defined causal signature. This is mathematically equiv-
alent to globally convolving each shot impulse in the source
with the signature. A seismic surveyor may set this signature
to be identical to the frequency sweeps programmed into the
veibroseis, or may instead use a modulated sweep to reflect
some knowledge of the coupling between the veibroseis and the
earth surface. Note that any arbitrary source signature may be
injected into the model in this way. Consequently if provided
with a source signature which can be estimated through some
external means, our refined model will be immediately extend-
able to all source types without modification to the underlying
computational structure.

ESTIMATION OF PRIMARIES BY SPARSE INVERSION

Recent works on surface-related multiple removal include a
method proposed by van Groenestijn and Verschuur (2009),
where the primary impulse response is directly inverted from
a linear operator which maps it to the up-going data wavefield.
This operator is written as the sum of two terms; the first being
a straightforward time-convolution with the source signature,
while the second term is a non-stationary convolution with the
up-going wavefield data. Expressed mathematically, the action
of this operator P acting on the unknown primary impulse
response x0 can be defined as

Px0 = F∗t
ˆ
ψX0−X0Du

˜
ω

Ft = du, (3)

where du is the up-going data wavefield, X0 represent a sin-
gle frequency slice in the shot-receiver plane of the primary
impulse response and Du likewise for the up-going data wave-
field, respectively. ψ is overloaded here to mean the individual
coefficients of the source signature estimate in the frequency
domain. The subscript ω on the inner bracket expression im-
plies that the contained expression is carried out separately for
each frequency.

According to the authors, a reasonable estimate of the pri-
mary impulse response can be obtained by an iterative steepest-
descent inversion process on P. The gradients of the objective



function f (x) = ‖du−Px‖2
2, is evaluated at ex0 (a current esti-

mate on x0) according to

O f (ex0) = 2(du−Pex0)P∗. (4)

An update to δex0 on ex0 is then obtained by picking the τ-th
largest elements of the gradient and setting the rest to zero,
followed by a scaling factor of 1/2. The next update will then
be calculated on the gradient of (ex0 + δex0). The process is
repeatedly carried out until a desired image of the primary is
formed, resulting in a method coined Estimation of Primaries
by Sparse Inversion (EPSI) by its authors, who have reported
that for the case of synthetic marine data a reasonable estimate
can typically be obtained within 100 such steps.

It is illuminating to recognize that EPSI belongs to a class of so-
called projected gradient methods in optimization. The implied
goal of EPSI is to solve an instance of the following non-convex
and NP-hard optimization problem:ex = argmin

x
‖y−Ax‖2 subject to ‖x‖0 < kτ, (5)

where in the case of EPSI, ex corresponds to ex0 the estimated
primary, operator A to the linear mapping P, y to the data wave-
field du, and k to the number of iterations taken in the EPSI
process. The cardinality constraint ‖x‖0 < kτ limiting the num-
ber of non-zeros in the solution makes the problem in Eq. 5
non-convex. As a result, such a method is not theoretically guar-
anteed to converge to a global solution. Indeed, it is reported
by van Groenestijn and Verschuur (2009) that if the cardinality
constraint for fixed k is imposed on the entire current estimateex0 at each step, then ESPI ceases to converge in a reasonable
amount of time. A workaround is to severely limit the size of
the feasible set at every iteration, such as imposing constraint
‖δex0‖0 = τ , so that the update making the largest possible
progress to the minimization objective in Eq. 5 can be found by
simple searching over the whole set. It is easy to show that for
‖δex0‖0 = τ this is done by zeroing everything in the gradient
except the τ-th largest elements, exactly as prescribed EPSI.
It is very possible to end up choosing overlapping element
positions between successive updates, but this not a problem
since the resulting solution the end will remain feasible for the
original constraint ‖x‖0 < kτ .

Another method inspired by convex optimization theory is re-
placing the cardinality constraint ‖x‖0 < kτ with a convex re-
laxation, namely a 1-norm constraint ‖x‖1 < σ . This approach
has been both theoretically and experimentally justified as be-
ing a very effective heuristic. In fact, showing that these two
terms are substitutable under the assumption of sparsity in x is
one of the main thesis of CS theory. More importantly, with
this substitution the problem in Eq. 5 becomes convex, meaning
that a global solution exists that can be solved in polynomial
time using any number of widely studied algorithms. Serendipi-
tously, the SPG`1 algorithm with which we originally proposed
to solve Eq. 2 is specifically designed to efficiently solve just
such a problem, with the addition that it solves it for a number
of different values of σ in an attempt to find the smallest σ that
will satisfy Eq. 2. We therefore propose to combine the demul-
tiplexing of seismic data and the estimation of primaries into
the same optimization problem, by defining A := RMPS∗ and
solving Eq. 2. Theoretically, this should yield three benefits:

(i) the computational overhead of the optimization algo-
rithm and any associated costs such as computing the
sparsity basis analysis can be amortized by solving the
two problems together instead of separately

(ii) an implicit resistance to the effect of reconstruction
errors in the separation on EPSI, due to the nature of
the inverse problem

(iii) either an improvement in SNR for a given number of
simultaneous shots, or the ability to further subsample
the shots while retaining similar SNR, following the
results shown in (Herrmann et al., 2009) where the
sparsity of the underlying solution is associated with
the quality of the recovery

The last argumens can also be intuited from the physical argu-
ment that the combined optimization problem treats the multiple
energy as a redundant sampling of the primaries.

Simulation experiment
To illustrate our claim, we devise a experiment on a combined
source separation and multiple removal problem. A synthetic
marine dataset shown as a crossing-planes plot in Fig. 2(a) is
subject to the CS sampling matrix RM with a 50% restriction in
R on both the shot and frequency direction, for a combined 75%
missing data on the whole volume. We model a typical seismic
“sweep” type signature of veibroseis trucks by choosing ψ(t) =
cos

“
2π( fbt + fe

2 t2)
”

with fb = 5Hz and fe = 100Hz. The
resulting transform on the source volume and the data wavefield
can be seen in Fig. 2(b) and 2(c) respectively. Solution of
Eq. 2 using A := RMS∗ is seen in Fig. 2(d) while a combined
recovery using A := RMPS∗ which directly gives the primary
impulse response is shown in Fig. 2(e). Note that the results in
Fig. 2(d) and 2(e) are obtained using the same algorithm SPG`1
ran for the same number of iterations. EPSI is then carried
out on the solution wavefield in Fig. 2(d) by solving Eq. 2
with A := PS∗ setting ψ as a Ricker wavelet centered at 10Hz
to estimate natural earth wave dispersion. The solution, seen
in Fig. 2(f), shows how non-uniform errors in the wavefield
separation severely weakens the effectiveness of EPSI since the
primaries can no longer be matched perfectly to the surface-
related multiples, even though the separated wavefield have a
relatively high SNR of 16.3.

DISCUSSION AND CONCLUSIONS

Compressive sampling is considered a paradigm shift, and we
have shown that simultaneous acquisition is a natural candidate
for the application of its principles. Savings in acquisition time
can be achieved through a deliberate reduction in the number
of sweeps recorded, the extent of which we know through CS
is commiserate with the complexity of the wavefield rather than
the number of shot positions. Furthermore we can directly in-
corporate EPSI to improve the quality of the resulting signal
while amortizing the cost of both separation and primary esti-
mation. In our opinion, our proof of principle is encouraging
and invites further investigation into the design and implemen-
tation of new acquisition schemes based on the principles from
compressive sensing.
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