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Drivers

We are no longer finding oil...

Push for improved seismic inversion

• create more high-resolution information on 
rock properties

• from noisier and incomplete data
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Impediments

Costs of acquisition to meet 
raised demands for full-waveform 
inversion...
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Impediments

Turn-around times to arrive at 
final product...
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Impediments

Moore’s law is coming to an 
end...
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Impediments

So, we can no longer compute 
ourselves out of this...
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Impediments

Size of our discretizations is 
dictated by a far too pessimistic 
Nyquist-sampling criterion...



SLIM

Wish list

Acquisition & processing costs 
determined by

• complexity of the subsurface

• controllable error 
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Paradigm shift

We are at the cusp of 
fundamental breakthroughs

• Compressive Sensing in mathematics

• Incoherent acquisition in seismic 
acquisition & processing practices ...

Aimed at dimension reduction!



http://en.wikipedia.org/wiki/Johnson%E2%80%93Lindenstrauss_lemma
http://en.wikipedia.org/wiki/Johnson%E2%80%93Lindenstrauss_lemma
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Combined strategy

Linear dimension reduction

•e.g., by incoherent randomized simultaneous 
acquisition with source encoding

Nonlinear recovery

•e.g., by curvelet-domain sparsity promotion 
via one-norm minimization 
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Strategy cont’d

Adapt compressive sensing (CS)

• randomized subsampling - turns aliases/
interference into noise

• sparsity promotion - removes subsampling 
noise by exploiting signal structure
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Case study I

Acquisition design according to CS

• Periodic subsampling vs randomized 
jittered sampling of sequential sources

• Subsampling with randomized jittered 
sequential sources vs randomized phase-
encoded simultaneous sources
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shot interpolation
12.5m  to  25m

pathology

50 % data-size 
reduction
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seismic line
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missing shots

 
50% subsampled shot
from regularly missing

shot positions
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regularized

SNR = 8.9 dB
50% subsampled shot
from regularly missing

shot positions
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Jittered sampling
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[Hennenfent & FJH, ’08]
[Gang et.al., ‘09]
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missing traces

 
50% subsampled shot

from randomized 
jittered shots
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regularized

SNR = 10.9 dB
50% subsampled shot

from randomized 
jittered shots
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Recent advances

CS applied to acquisition design
“Higher dimensional blue-noise sampling schemes 
for curvelet-based seismic data recovery” 

by Gang Tang, Reza Shahidi, Jianwei Ma, and 
Felix J. Herrmann. SPMUL 2 Multiples II
Room: General Assembly C @ 03:10 PM
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Multi-D jittering

25 % samples
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Multi-D jittering

SNR=6.77 dB SNR=9.75 dB



Simultaneous & incoherent sources
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multiplexed

 
50% subsampled shots

from randomized
simultaneous shots
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demultiplexed

SNR = 16.1 dB
50% subsampled shot

from randomized
simultaneous shots
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regularized

SNR = 10.9 dB
50% subsampled shot

from randomized 
jittered shots
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Recent advances

CS applied to forward modeling
“Compresive simultaneous full-waveform 
simulation” 

by Felix J. Herrmann, Tim T. Y. Lin*, Yogi A. 
Erlangga. SM 1 Algorithms and Methods
Room 360 A @ 11:25 AM

http://slim.eos.ubc.ca/Publications/Public/Conferences/SEG/2009/lin09segcss.pdf
http://slim.eos.ubc.ca/Publications/Public/Conferences/SEG/2009/lin09segcss.pdf
http://slim.eos.ubc.ca/Publications/Public/Conferences/SEG/2009/lin09segcss.pdf
http://slim.eos.ubc.ca/Publications/Public/Conferences/SEG/2009/lin09segcss.pdf


full modeling + CS

CS sources fast modeling
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18.2dB28.1dB

Recovery from 25 %

simple complex
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Strategy

Adapt Compressive Sensing (CS)
➡randomized subsampling - turns aliases/

interferences into noise

• sparsity promotion - removes subsampling 
noise by exploiting signal structure
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Ideal coverage

Seismic Laboratory for Imaging and Modeling
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Actual coverage

1

1

1

Seismic Laboratory for Imaging and Modeling

Model

GP =
subset sources

sampling matrix

Periodic 50 % subsampling
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Sampling

Seismic Laboratory for Imaging and Modeling

Model

Seismic Laboratory for Imaging and Modeling

Model

GP = R∗
subsampling

matrix
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CS matrix

linear compressive-sampling matrix

A =
(
R⊗ I

)
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bad, bad examples
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bad, bad examples
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(every-other source simultaneous)
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good example

Gaussian 
noise

(Subsampled simultaneous-source experiments)

A =
(
R ⊗ I

)
incoherent

simultaneous 
sources



Simultaneous & incoherent sources
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Reality check

A new look at simultaneous 
sources by Beasley et. al., ’98.
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Reality check

Changing the mindset in seismic 
data acquisition by Berkhout ’08.
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Or

Blending versus unblending ...

?

✓

$$$$$$$$$ $
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Strategy cont’d

Adapt Compressive Sensing (CS)

• randomized subsampling - turns aliases/
interference into noise

➡sparsity promotion - removes subsampling 
noise by exploiting signal structure



SLIM

Least squares

We know that

does not promote sparsity...

minx ‖b−Ax‖

with b = vec
(
P

)
and A =

(
R⊗ I

)
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I know geophysics! 
G has some sort of 
structure

but wait...
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Curvelets
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[Demanet et. al., ‘06]
[Hennenfent & FJH, ‘06]
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Fourier

 

1 % of coefficients

SNR 2.1 dB
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Curvelets

 

1 % of coefficients

SNR 6.0 dB
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So, we know... a 
compressive 
representation S

Sparsifying transform

(x0 is compressible or sparse)

g = S∗x0
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CS matrix

linear compressive-sampling matrix
with sparsifying transform

A =
(
R⊗ I

)
S∗
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Promote sparsity

Is unfortunately NP hard ...

subject to Ax = b

min
x

nnz(x)
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talk to strangers
mathematicians

Candes Tao Donoho Romberg
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talk to strangers
mathematicians

“Look at A!”
(Compressive Sensing)
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Recovery conditions

• Related to Johnson-Lindenstrauss Lemma

• CS establishes links between

‣ subsampling rate & sparsity

‣ recovery error & subsampling rate

• Equivalence one- and zero-norm minimization

(1− δk)‖xT ‖!2 ≤ ‖AT x‖!2 ≤ (1 + δk)‖xT ‖!2

(Restricted Isometry Property)

[Candès, Romberg, and Tao, ‘06]
[Donoho, ‘06]
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Convexification
We know that

is a very good 
convex relaxation 

subject to Ax = b

min
x

‖x‖!1
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Reality check

“When a traveler reaches a fork in the road, 
the 11-norm tells him to take either one way 
or the other, but the l2 -norm instructs him to 
head off into the bushes.”

John F. Claerbout and Francis Muir, 1973 
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One-norm solver

[van den Berg & Friedlander, ’08]
[Hennenfent, FJH, et. al, ‘08]
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(c) Pareto curve and solution path

Fig. 6.1. Corrupted and interpolated images for problem seismic. Graph (c) shows the Pareto
curve and the solution path taken by SPGL1.

ever, as might be expected of an interior-point method based on a conjugate-gradient
linear solver, it can require many matrix-vector products.

It may be progressively more difficult to solve (QPλ) as λ → 0 because the reg-
ularizing effect from the one-norm term tends to become negligible, and there is less
control over the norm of the solution. In contrast, the (LSτ ) formulation is guaranteed
to maintain a bounded solution norm for all values of τ .

6.4. Sampling the Pareto curve. In situations where little is known about
the noise level σ, it may be useful to visualize the Pareto curve in order to understand
the trade-offs between the norms of the residual and the solution. In this section
we aim to obtain good approximations to the Pareto curve for cases in which it is
prohibitively expensive to compute it in its entirety.

We test two approaches for interpolation through a small set of samples i =
1, . . . , k. In the first, we generate a uniform distribution of parameters λi = (i/k)‖ATb‖∞
and solve the corresponding problems (QPλi). In the second, we generate a uni-
form distribution of parameters σi = (i/k)‖b‖2 and solve the corresponding problems
(BPσi). We leverage the convexity and differentiability of the Pareto curve to approx-
imate it with piecewise cubic polynomials that match function and derivative values
at each end. When a nonconvex fit is detected, we switch to a quadratic interpolation

from http://people.cs.ubc.ca/~mpf/

http://people.cs.ubc.ca/~mpf/
http://people.cs.ubc.ca/~mpf/
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Controlled 
experiments
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Bottom line

CS acquisition & recovery costs are 
proportional to

• transform-domain sparsity: the sparser the cheaper 
acquisition/the faster the turnaround

• recovery error: the larger the permissible error the 
cheaper the acquisition/the faster the turnaround ...
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Design principles: 
the road ahead

• randomize - break subsampling 
interferences

• sparsify - exploit structure by transform-
domain sparsity promotion

➡focus - leverage physics of waves  
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Case study II

Processing according to CS

• CS recovery from simultaneous data,  
followed by primary estimation

vs.

• Primary estimation directly from 
simultaneous data



Seismic Laboratory for Imaging and Modeling
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CS

Use to demultiplex

Gaussian 
noiseA =

(
R ⊗ I

)
S∗

(Randomized simultaneous sources)
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Total data recovered 

from randomized
data
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Physical principle

Modeling the surface:

Inversion “focusses” multiples 
onto primaries ...

[Groenestijn et. al. ‘09]
[Lin and Herrmann, ‘09]

upgoing wavefield︷︸︸︷
P ≈ G︸︷︷︸

surface-free impulse response

downgoing wavefield︷ ︸︸ ︷
[Q−P]
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Predicted primaries from

recovered total data
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Extension CS
Use to demultiplex & predict

Seismic Laboratory for Imaging and Modeling

Model

A =
(M models free surface & source function)

Gaussian 
noise

Seismic Laboratory for Imaging and Modeling

Model

M S†

[Lin & FJH, ’09]

R
{randomized physics
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Recovered total data 

from randomized
compressive data
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Recent advances

CS applied to wavefield inversion
“Unified compressive sensing framework for 
simultaneous acquisition with primary estimation” 

by Tim Lin and Felix J. Herrmann. Session: SPMUL 
2 Multiples II. Room: General Assembly C @ 
03:10 PM



SLIMPrimary estimation
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Bottom line

CS explains improved recovery

CS leads to reduction of data 
volumes & computational costs

Incorporating physics really pays ...
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Recent advances

Model-space CS applied to imaging 
with extensions
“Compressive imaging by wavefield inversion with 
group sparsity” 

by Felix J. Herrmann. SI 3 Methods
Room: 351 F @ 02:45 PM.



From 0.1% samples



From 0.1% samples
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Recent advances

CS applied to full-waveform 
inversion
“Seismic waveform inversion with Gauss-Newton-
Krylov method” 

by Yogi Erlangga and Felix J Herrmann. SI 3 
Methods. Room: 351 F @ 04:25 PM.
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Conclusions & 
outlook

Dimensionality reduction will 
revolutionize our field

• reduction of acquisition costs

• decrease in processing time

• high-resolution inversions that are otherwise 
infeasible with Nyquist-based methods
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Relation to existing work
Simultaneous & continuous acquisition:

– A new look at simultaneous sources by Beasley et. al., ’98.

– Changing the mindset in seismic data acquisition by Berkhout ’08.

 Transform-based seismic data regularization
– Interpolation and extrapolation using a high-resolution discrete Fourier transform by Sacchi et. ald, ’98
– Reconstruction of band-limited signals, irregularly sampled along one spatial direction by Duijndam et. al., ’99

– Non-parametric seismic data recovery with curvelet frames by FJH and Hennenfent.,’07
– Simply denoise: wavefield reconstruction via jittered undersampling by Hennenfent and FJH, ‘08

Wavefield extrapolation:
– Compressed wavefield extrapolation by T. Lin and F.J.H, ’07
– Compressive wave computations by L. Demanet and G. Peyré ,‘08

Simultaneous simulations, imaging, and full-wave inversion:
– Faster shot-record depth migrations using phase encoding by Morton & Ober, ’98.
– Phase encoding of shot records in prestack migration by Romero et. al., ’00.

– How to choose a subset of frequencies in frequency-domain finite-difference migration by Mulder & Plessix, ’04.
– Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies by Sirque & Pratt, ’04.

– Efficient Seismic Forward Modeling using Simultaneous Random Sources and Sparsity by N. Neelamani et. al., ’08.

– Compressive simultaneous full-waveform simulation by FJH et. al., ’09.
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Thank you for your attention!

more information

slim.eos.ubc.ca

http://my.yahoo.com/
http://my.yahoo.com/

