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SUMMARY

Seismic exploration relies on the collection of massive data
volumes that are subsequently mined for information during
seismic processing. While this approach has been extremely
successful in the past, the current trend of incessantly pushing
for higher quality images in increasingly complicated regions of
the Earth continues to reveal fundamental shortcomings in our
workflows to handle massive high-dimensional data volumes.
Two causes can be identified as the main culprits responsible
for this barrier. First, there is the so-called “curse of dimension-
ality” exemplified by Nyquist’s sampling criterion, which puts
disproportionate strain on current acquisition and processing
systems as the size and desired resolution of our survey areas
continues to increase. Secondly, there is the recent “departure
from Moore’s law” that forces us to lower our expectations
to compute ourselves out of this curse of dimensionality. In
this paper, we offer a way out of this situation by a deliberate
randomized subsampling combined with structure-exploiting
transform-domain sparsity promotion. Our approach is success-
ful because it reduces the size of seismic data volumes without
loss of information. Because of this size reduction both impedi-
ments are removed and we end up with a new technology where
the costs of acquisition and processing are no longer dictated by
the size of the acquisition but by the transform-domain sparsity
of the end-product after processing.

BASIC METHODOLOGY IN A NUTSHELL

Coherent subsampling-related interferences are the main ene-
mies of successful seismic acquisition and processing. These
interferences can come from any number of places: tradition-
ally they are caused by badly designed regular sub-Nyquist
samplings of sources and receivers, and more recently by badly
designed simultaneous sources. Conversely, well-designed ran-
domized subsamplings—through jittered sampling (Hennen-
fent and Herrmann, 2008) of the source-receiver positions or
through randomly phase encoded source signatures (Berkhout,
2008; Neelamani et al., 2008; Herrmann et al., 2009)—lead
to manageable subsampling artifacts that manifest themselves
as incoherent noise with a level that depends on the degree of
subsampling; the more subsampled you are the higher your ex-
pected noise level becomes. Herein lies an unique opportunity:
as long as we are able to separate subsampling noise from de-
sired signal, we are in the position to remove the impediments of
the “curse of dimensionality” and the apparent “departure from
Moore’s law”. This is where transform-domain sparsity enters
into the equation, because the sparser we can represent our de-
sired signal—i.e., the more of the signal’s energy we can store
into the fewer largest transform-domain coefficients—the better
we can separate this incoherent subsampling noise from signal.
This task of recovering fully-sampled signals from deliberate
subsampling is actually far less daunting as it may seem; we all
know that seismic data contains structure that can be exploited
with certain multiscale and multidirectional transforms such as

curvelets (Candès et al., 2006). These transforms—possibly in
conjunction with focusing procedures that map multiple energy
onto primaries (see e.g. Herrmann and Wang (2008); van Groen-
estijn and Verschuur (2009) and our other contribution to the
proceedings of this conference) or that collapse primary energy
onto reflectors during imaging (see our other contribution to the
proceedings of this conference)—translate this structure into
transform domain sparsity. We exploit this sparsity with our
sparsity-promoting recovery techniques. Bottom line: As long
as our object of interest permits a sparse enough representation,
we are able to separate incoherent subsampling noise from our
signal and therefore recover our signal from fewer samples
than dictated by the Nyquist limit.

Mathematically, our recovery from deliberate subsampling with
sparsity promotion can be formulated as the inversion of a flat
matrix A via

min
x

‖x‖1 :=
X

i

|xi| subject to Ax = b, (1)

with

A =

randomized restrictionz}|{
R M|{z}

randomized physics

inv. sparse transformz}|{
S∗. (2)

The above optimization procedure seeks amongst all possible
transform-domain vectors x that which has the smallest one
norm—i.e., it seeks the sparsest vector using a heuristically
derived one-norm measure. The true miracle in this nonlinear
recovery lies in the fact that the above optimization problem
is able to recover the original coefficient vector—and hence
the original data—with high accuracy from randomized sub-
sampled data in b. Here, the estimate for the recovered data
is given by ed = S∗ex with ex the vector that solves the above
optimization program. The accuracy of the recovery depends
on the following design principles:

• the length of the measurement vector b = hight of the
randomized restriction matrix R, which randomly re-
moves rows. The longer b the better the recovery.

• properties of the measurement matrix M that preferably
represents randomized physics underlying the measure-
ments. The more randomized this matrix—i.e., the
more its action on S∗ resembles a matrix with random
Gaussian noise—the better the recovery.

• the sparsity attained by the transformed domain spanned
by S. The sparser this domain the better the recovery.

These design principles find their origin and theoretical justi-
fication in a new field of mathematics known as compressive
sampling(Donoho, 2006; Candès et al., 2006), where sparse
signals are recovered from randomized samples using sparsity-
promoting programs. In the next two sections, we illustrate the
above examples by two concrete examples that underline the
importance of following the above design principles.



Getting more information from fewer samples

EXAMPLE I: RECOVERY OF FULLY SAMPLED DATA
FROM JITTERED SAMPLING AND SIMULTANEOUS
ACQUISITION

To illustrate the importance of selecting the appropriate ran-
domized measurement matrix M, we compare recovery from
three incomplete (50 % of shots missing) data sets that are
equal in size but that differ in acquisition strategy, mainly ac-
cording to two different scenarios. In the first scenario, we
recover from deterministic impulsive shots chosen either at
regular or at random (jittered) source positions. In the second
scenario, we also fire 50 % of the time but now with incoherent
randomized sweeps that go off simultaneously at all source
positions. Results yielded by sparsity-promoting recovery from
data collected according to both scenarios are summarized in
Fig. 1. Comparison of the recovery from regular, jittered, and
simultaneous shots shows a drastic improvement in the recovery
quality as we move from regular subsampled, to randomized
jittered source locations all the way to randomized simultane-
ous sources. These findings clearly underline the importance of
randomization in the collection of seismic data. This example
also nicely illustrates that randomization of the source locations
by itself is not optimal and that a lot is to be gained by designing
randomized incoherent simultaneous-source acquisitions such
as acquisitions using phase-encoded sweeps.

EXAMPLE II: ESTIMATION OF PRIMARIES FROM
SIMULTANEOUS DATA

The above scheme of recovery from randomized data can even
be carried a step further by including more information on the
physics, i.e., focusing in the matrix M. For instance, if we
include in this matrix—aside from the randomization of the
sources—an operator that generates surface related multiples,
our inversion procedure will map surface-related multiples to
“primaries” (that include internal multiples). This approach has
two advantages. First, “primaries” are sparser then multiples.
Second, multiples are mapped to primaries and thereby facil-
itate the decoding by sparsity promoting. To illustrate how
this works we consider the following two scenarios. First, we
recover the total data, including the surface-related multiples,
from simultaneous acquired data followed by a prediction of
the primaries. Second, we estimate the primaries directly from
the simultaneously collected data. As we can see from Fig. 2,
the recovery according to the second scenario is far superior
because we incorporated more physics into the formulation of
our problem (see our other contribution to the proceedings of
this conference).

DISCUSSION

The above examples illustrate that we are at the cusp of very
exciting developments where our design principles for acqui-
sition and processing no longer need to be dominated by our
fear of creating coherent subsampling related artifacts. Instead,
we arrive at a formulation where we have control over these
artifacts—by turning harmful coherent interferences into harm-
less incoherent noise. In this way, we facilitate the removal of
subsampling related artifacts by our sparsity-promoting inver-
sion procedure. This opens enticing new perspectives towards
a new formulation of seismic data acquisition and processing.

To summarize, the success of this new formulation depends on
three key design principles, namely

1. randomize—break coherent aliases by introducing ran-
domness, e.g. by designing randomly perturbed acqui-
sition grids, or by designing randomized simultaneous
sources and blended receivers.

2. sparsify—utilize sparsifying transforms in conjunction
with sparsity promoting programs to remove incoher-
ent subsampling artifacts, e.g. by exploiting curvelet-
domain sparsity.

3. focus–leverage physical focusing principles that concen-
trate seismic energy in order to further promote sparsity
in the final solution, e.g. by turning multiples into pri-
maries or primaries into images.

EXTENSIONS

The implications of randomized incoherent sampling go far
beyond the examples presented in this paper. For instance, our
approach is applicable to land acquisition for physically realiz-
able sources (Krohn and Neelamani, 2008; Romberg, 2008) and
can be used to faster compute solutions to the wave equation
(Herrmann et al., 2009) or to compute image volumes with
smaller memory imprint. Because randomized sampling is lin-
ear (Bobin et al., 2008), our simulation method is incremental—
i.e., adding more samples improves recovery. This linear-
ity allows us to do compressive processing (e.g. estimation
of primaries) or compressive computations on compressively-
sampled data, an observation made independently by Berkhout
(2008).

CONCLUSIONS

We have made the case that information can be obtained from
randomized subsamplings. This allows us to formulate rigorous
and cost-effective acquisition and processing schemes based
on the principles of compressive sensing. According to these
principles, data can be reconstructed from randomized subsam-
plings commensurate with their complexity. We verified this
behavior experimentally and this, in conjunction with the intrin-
sic linearity of the randomized sampling, opens a number of
enticing new perspectives because acquisition and processing
costs are decoupled from the acquisition area and grid size. In-
stead, these costs depend on sparsity. Because of this linearity,
we envision a seamless incorporation of this new paradigm into
seismic exploration.
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Figure 1: Sparsity-promoting recovery from 50 % of the shots missing. (a) Regularly subsampled shots. (b) Recovery from
regularly subsampled shots. (c) Jittered subsampled shots (d) Recovery from jittered subsampled shots. (e) Subsampled randomized
simultaneous shots. (f) Recovery from randomized simultaneous shots. Notice the remarkable improvement in recovery from the
simultaneously acquired data.
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Figure 2: Sparsity-promoting recovery from simultaneously sampled data with 50 % of the shots missing. (a) Original data. (b)
Estimation of the total data by sparsity promotion. (c) Estimation of primaries from recovered total data under (b). (d) Estimation of
primaries directly from the simultaneously acquired data. Notice the remarkable improvement in the estimation of the primaries
directly from the simultaneously acquired data.



Getting more information from fewer samples

REFERENCES

Berkhout, A. J., 2008, Changing the mindset in seismic data acquisition: The Leading Edge, 27, 924–938.
Bobin, J., J.-L. Starck, and R. Ottensamer, 2008, Compressed sensing in astronomy: IEEE Journal of Selected Topics in Signal

Processing, 3, 718–726.
Candès, E., J. Romberg, and T. Tao, 2006, Stable signal recovery from incomplete and inaccurate measurements: Communications

on Pure and Applied Mathematics, 59, 1207–1223.
Candès, E. J., L. Demanet, D. L. Donoho, and L. Ying, 2006, Fast discrete curvelet transforms: Multiscale Modeling and Simulation,

5, 861–899.
Donoho, D. L., 2006, Compressed sensing: IEEE Transactions on Information Theory, 52, 1289–1306.
Hennenfent, G. and F. J. Herrmann, 2008, Simply denoise: wavefield reconstruction via jittered undersampling: Geophysics, 73,

V19–V28.
Herrmann, F. J., Y. A. Erlangga, and T. T. Y. Lin, 2009, Compressive simultaneous full-waveform simulation: Geophysics, 74,

A35–A40.
Herrmann, F. J. and D. Wang, 2008, Seismic wavefield inversion with curvelet-domain sparsity promotion: SEG Technical Program

Expanded Abstracts, 27, 2497–2501.
Krohn, C. and R. Neelamani, 2008, Simultaneous sourcing without compromise: Rome 2008, 70th EAGE Conference & Exhibition,

B008.
Neelamani, N., C. Krohn, J. Krebs, M. Deffenbaugh, and J. Romberg, 2008, Efficient seismic forward modeling using simultaneous

random sources and sparsity: SEG International Exposition and 78th Annual Meeting, 2107–2110.
Romberg, J., 2008, Compressive sensing by random convolution: submitted. Preprint available at http://users.ece.gatech.

edu/˜justin/Publications_files/RandomConvolutio%n.pdf.
van Groenestijn, G. J. A. and D. J. Verschuur, 2009, Estimating primaries by sparse inversion and application to near-offset data

reconstruction: Geophysics, 74, A23–A28.


